Math, asked by jashan667, 1 year ago

Find the area of the quad ABCD in which AB=7cm,BC=6cm,CD=12cmDA=15cm and AC=9cm

Answers

Answered by ONKAR2003
1
area of quadrilateral ABCD= Area of triangle ABC + Area of triangle ADC
Area of trianlge= sqrt(s(s-a)(s-b)(s-c))
FOR area of triangle ABC

s=(7+6+9)/2=11
area of triangle ABC=sqrt(11(11-7)(11-6)(11-9))
=sqrt(440)
= 20.9761
similarly,
area of triangle ADC=54

therefore area of quadrilateral ABCD=20.9761+ 54
=74.9761
Answered by Anonymous
17

ANSWer:

The diagonal AC divides the quadilateral ABCD into two triangles ABC and ACD.

  \bf \tiny \: area \: of \: quad. \: abcd \:  = area \: of \:  \triangle \: abc + area \: of \:  \triangle \: acd

For ABC, we have

 \qquad \tt \: s =  \frac{6 + 7 + 9}{2}  = 11 \: cm. \\

 \therefore \sf \small \: Area \: of \:  \triangle \: ABC \:  =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  \\  \implies \sf \small \: Area \: of \:  \triangle \: ABC =  \sqrt{11(11 - 6)(11 - 7)(11 - 9)}  \\  \\  \\    \implies \sf \small \sqrt{11 \times 5 \times 4 \times 2}  =  \sqrt{440} \:  sq.cm \\  \\   \\  \implies \sf \small \: Area \: of \:  \triangle \:  ABC = 20.98 \:  {cm}^{2}

_________________________

For ACD, we have

 \qquad \tt \: s =  \frac{9 + 12 + 15}{2} = 18 \: cm \\

 \therefore \sf \small \: Area \: of \:  \triangle \: ACD =  \sqrt{18(18 - 9)(18 - 12)(18 - 15)}  \\  \\  \\  \implies \sf \small \: Area \: of \:  \triangle \: ACD =  \sqrt{18 \times 9  \times  6 \times 3} \\ \\ \\ \implies \sf 54 \: sq.unit \\ \\

Hence, Area of Quadilateral ABCD = ( 20.98 + 54) cm² = 74.98 cm².

Similar questions