Math, asked by preetramgarhia, 1 year ago

find the area of the quadilateral whose sides measures 9cm,40cm,28cm and 15cm. The angle between the first two sides of the quadilateral is a right angle

Answers

Answered by riameena4
1
The area of quadrilateral is equal to sum of areas of two triangles in which it's diagonals divide it.

So, area =0.5×40×9+√s(s-a)(s-b)(s-c)

a=√{40²+9²}=41 
b=28 and c=15 
And s=(41+15+28)/2
Answered by Anonymous
14

AnswEr:

Clearly, DAB is a right - angles triangle. Therefore,

 \tt \:  {db}^{2}  =  {da}^{2}  +  {ab}^{2}  \\  \\  \rightarrow \tt {db}^{2} =  {9}^{2} +  {40}^{2}   \\  \\  \rightarrow \tt \: db =  \sqrt{81 + 1600}  \: m = 41 \: m

\rule{170}3

In ∆DAB, we have

\tt  2s = da + ab + bd = (9 + 40 + 41) = 90 \: m \\  \\  \tt \rightarrow \: s = 45m \\  \\  \tt \rightarrow \: a_1 = area \: of \triangle   dab \\  =  \tt  \sqrt{45(45 - 9)(45 - 40)(45 - 41)}    \: {m}^{2}  \\  \\  =  \tt \sqrt{45 \times 36 \times 5 \times 4}   \: {m}^{2}  \\  \\  =  \tt  \sqrt{5  \times 9 \times 36 \times 5 \times 4}  \:  {m}^{2}  \\  \\  \tt =  \sqrt{ {5}^{2} \times  {3}^{2} \times  {6}^{2}  \times  {2}^{2}   }     \: {m}^{2}  \\  \\  \tt = (5 \times 3 \times 6 \times 2)  \: {m}^{2}  = 180 \:  {m}^{2}

\rule{170}3

In ∆DCB, we have

 \tt = 2s = DC + CB + BD \\  =  \tt \: 20s = 28 + 15 + 41 = 84 \\  \tt \: s = 42

\tt area\: of \:  \triangle \: DCB \\  \\  \tt \: =   \sqrt{42(42 - 28)(42 - 15)(42 - 41)}  \:  {m}^{2}  \\  \\  \tt \:  =  \sqrt{42 \times 14 \times 27 \times 1} \:   {m}^{2}  \\  \\  \tt =  \sqrt{7 \times 2 \times 3 \times 7 \times 2 \times 3 \times 3 \times 3}  \:  {m}^{2}  \\  \\  \tt =  \sqrt{ {7}^{2} \tines  {2}^{2}  \times  {3}^{4}   } \:  {m}^{2}  \\   \\  \tt = (7 \times 2 \times  {3}^{2} ) = 126 \:  {m}^{2}

\rule{170}3

Hence, Area of the field

= (180 + 126) m² = 306 .

#BAL

#Answerwithquality

Attachments:
Similar questions