Find the area of the quadrilateral ABCD.
Answers
Given :
A quadrilateral ABCD in cartesian plane
A(-3,3)
B(-2,-4)
C(4,-1)
D(3,4)
To find :
Area of ABCD
Construction :
Join BD to divide quadrilateral ABCD into two triangles ∆ ABD and ∆CBD
Solution :
From figure,
AB = (4+3) units = 7units [along y - axis]
BC = (2+4) units = 6units [along x - axis]
CD = (1+4) units = 5units [along y - axis]
DA = = (3+3) units = 6units [along x - axis]
To find BD
where,
Now,
ar.(ABCD) = ar.(∆ABD) + ar.(∆CBD)
To find area of triangles using Heron's Formula
- In ∆ABD
Semiperimeter
= Perimeter/2
= (AB+BD+AD)/2
= (7+9.4+6)/2
= 22.4/2
=11.2
Let AB = a = 7
BD = b = 9.4
AD = c = 6
Inserting values in Heron's Formula :
ar.∆ABD ≈ 20.98 sq.units
- In ∆CBD
Semiperimeter
= Perimeter/2
= (CB+BD+CD)/2
= (6+9.4+5)/2
= 20.4/2
=10.2
Let CB = a = 6
BD = b = 9.4
CD = c = 5
Inserting values in Heron's Formula :
ar.∆CBD ≈ 13.35 sq.units
Area of quadrilateral ABCD = ar.(∆ABD) + ar.(∆CBD)
Area of quadrilateral ABCD = 20.98 + 13.35 sq. units
Area of quadrilateral ABCD = 34.33 sq. units.
Answer:
Area =34.33 sq unit
Step-by-step explanation:
the answer is correct
mark me as brainlist and thank you