Math, asked by Preshwill, 1 year ago

Find the area of the quadrilateral ABCD in which AD=24 cm,in triangle BAD=90 and BCD froms an equilateral triangle whose each side is 26 cm.

Answers

Answered by MojbulHussain
23
ar(ABCD)= ar(ABD)+ ar(BDC)
= 90+ 1/2× 26× 22.52
=90+ 292.76
=382.76 cm.cm

Dev1444: BCD forms equiteral triangle
Dev1444: BC = CD = CD = 26 because equiteral triangle. BD² = AB²+AD². AB² = BD² - AD². AB² = 26² - 24². Then AB = 10. ar BAD + ar BCD = ½×10×24 + √¾×26×26.
= 120 + √3×169.
= 412.7cm²
Answered by boffeemadrid
65

Answer:


Step-by-step explanation:

From triangle ABD, using Pythagoras theorem,

(BD)^{2}=(AB)^{2}+(AD)^{2}

(26)^{2}=(24)^{2}+(AB)^{2}

676-576=(AB)^{2}

AB=10 cm

Now, Area of triangle BAD=\frac{1}{2}{\times}BA{\times}AD=\frac{1}{2}{\times}10{\times}24=120 cm^{2}

Area triangle BCD=\frac{\sqrt{3}}{4}{\times}(26)^{2}=292.37 cm^{2}

Now, Area of Quadrilateral ABCD= Area of Triangle BAD+ area of triangle BCD

=120+292.37=412.37 cm^{2}

Attachments:
Similar questions