Math, asked by brahmacharimayumrame, 2 months ago

Find the area of the quadrilateral ABCD in which
by a
AB = 5 cm, BC = 4.5 cm, CD = 3.5 cm, DA = 4 cm and AC = 6.5 cm

Answers

Answered by llAngelsnowflakesll
36

\huge\tt\colorbox{teal}{Verified✔}

\huge\tt\red{Q}\tt\pink{U}\tt\blue{E}\tt\green{S}\tt\purple{T}\tt\orange{I}\tt\orange{O}\huge\tt\red{N}

Find the area of the quadrilateral ABCD in which

by a

AB = 5 cm, BC = 4.5 cm, CD = 3.5 cm, DA = 4 cm and AC = 6.5 cm

\huge\tt\red{❥}\tt\pink{A}\tt\blue{N}\tt\green{S}\tt\purple{W}\tt\orange{E}\tt\orange{R}\huge\tt\purple{᭄}

\huge\tt\colorbox{orange}{Given:-}

AB = 5 cm,

BC = 4.5 cm,

CD = 3.5 cm,

DA = 4 cm and

AC = 6.5 cm

A(ABCD) = 17.285 cm?

Step-by-step explanation:

Heron formula

A = vs(s - a)(s - b)(s - c)

s= (a + b + c)/2

a;b; c= the sides of the triangle

.

A(ABCD) = A(ABC) + A(ACD)

1. A(ABC) = vs(s - AB)(S - BC)(S - AC)

s= (AB + BC + AC)/2 = (5cm + 4.5cm + 6.5cm)/2 = 16cm/2 = 8 cm

A(ABC) = 1818 - 5)(8 - 4.5)(8 - 6.5)

= V8x3x3.5x1.5

= 7126

= 11.225 cm

2. A(ACD) = vs/S - AC)(s - CD) (S - AD) s=(AC + CD + AD)/2 = (6.5cm + 3.5cm + 4cm)/2 = 14cm/2 = 7 cm A(ACD) = 7717-6.5)(7 - 3.5)(7 - 4)

A(ACD) = Vs(S - AC)(s - CD) (s - AD)

S = (AC + CD + AD)/2 = (6.5cm + 3.5cm + 4cm)/2 = 14cm/2 = 7 cm

A(ACD) = 1717 - 6.5)(7 - 3.5)(7 - 4)

= V7x0.5*3.5*3

= 136.75

= 6.060 cm?

Thanks!!!Σ ◕ ◡ ◕

❥Hope it helps u

❥Mark me as brainliest

Similar questions