Find the area of the quadrilateral whose vertices are(2,4),(3,5),(-3,4),&(-4,-3).
Answers
Answer:
28 unit square
Step-by-step explanation:
let A =( -4 , -2 )
B = (-3 , -5 )
C = ( 3 , -2 )
D = ( 2 , 3 )
now in triangle ABD
area = 1/2 { 2*(-2 + 5 ) - 4( -5 -3 ) -3( 3 + 2 ) }
1/2 { 2*3 - 4* (-8) - 3 * 5 )
1/2{ 6 + 32 - 15}
23/2
therefore area of triangle ABD = 23/2 unit square ------------1
now area of triangle BCD
area = 1/2{ -3( -2 -3 ) + 3( 3 + 5 ) + 2( -5 + 2 ) }
1/2 { -3*-5 + 3*8 + 2*(-3)}
1/2 { 15 + 24 - 6 }
33/2
therefore area of triangle BCD = 33/2 unit square ------------- 2
adding 1 & 2
23/2 + 33/2
( 23 + 33 )/2
56 / 2
28
therefore totall area = 28 unit square
Answer:
Let A(–4,–2), B(–3,–5), C(3,–2) and D(2,3) be the vertices of the quadrilateral ABCD.
Area of a quadrilateral ABCD= Area of △ABC+ Area of △ACD
By using a formula for the area of a triangle =
2
1
∣x
1
(y
2
−y
3
)+x
2
(y
3
−y
2
)+x
3
(y
1
−y
2
)∣
Area of △ABC
=
2
1
[−4(−5+2)+−3(−2+2)+3(−2+5)]
=
2
1
[12+9]
=
2
21
sq.units
Area of △ACD=
2
1
[−4(3+2)+−2(−2+2)+3(−2−3)]
=
2
1
[−20−15]
=
2
35
sq.units
∴Area of quadilateral=
2
21
+
2
35
=
2
56
=28 sq.unit