Math, asked by NaveenMsM, 10 months ago

find the area of the quadrilateral whose vertices are at (-9,-2),(-8,-4),(2,2),(1,-3).​

Answers

Answered by StaceeLichtenstein
0

Given:

The vertices of quadrilateral are (-9,-2), (-8,-4), (2,2), (1,-3).

Find:

The area of quadrilateral.

Solution:

Consider the given quadrilateral ABCD.

There is a attachment of the quadrilateral ABCD.

Find the area of triangle ABD.

Area of triangle ABD =\frac{1}{2} $$\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$$

Here,

$${x_1} =  - 9$$ , $${x_2} =  - 8$$, $${x_3} =  1$$, $${y_1} =  - 2$$, $${y_2} =  - 4$$, $${y_3} =  - 3$$

Substitute the values in the above formula, we get

Area of triangle ABD

=\frac{1}{2} $$\left[ { - 9\left( { - 4 - \left( { - 3} \right)} \right) + \left( { - 8} \right)\left( { - 3 - \left( { - 2} \right)} \right) + 1\left( { - 2 - \left( { - 4} \right)} \right)} \right]$$\\=\frac{1}{2} $$\left[ { - 9\left( { - 4 + 3} \right) - 8\left( { - 3 + 2} \right) + 1\left( { - 2 + 4} \right)} \right]$$\\=\frac{1}{2}$$\left[ { - 9\left( { - 1} \right) - 8\left( { - 1} \right) + 1\left( 2 \right)} \right]$$\\=\frac{1}{2}$$\left[ {9 + 8 + 2} \right]$$\\=\frac{19}{2}

Find the area of triangle CBD.

Area of triangle CBD =\frac{1}{2} $$\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$$

Here,

$${x_1} =  2$$ , $${x_2} =  - 8$$, $${x_3} =  1$$, $${y_1} =  2$$, $${y_2} =  - 4$$, $${y_3} =  - 3$$

Substitute the values in the above formula, we get

Area of triangle CBD

=\frac{1}{2} $$\left[ {2\left( { - 4 + 3} \right) - 8\left( { - 3 - 2} \right) + 1\left( {2 + 4} \right)} \right]$$\\=\frac{1}{2}$$\left[ {2\left( { - 1} \right) - 8\left( { - 5} \right) + 1\left( 6 \right)} \right]$$\\=\frac{1}{2}$$\left[ { - 2 + 40 + 6} \right]$$\\=\frac{44}{2} \\=22

Area of quadrilateral  ABCD = Area of triangle ABD + Area of triangle CBD\frac{19}{2} +22=\frac{63}{2} =31.5

So, the area of quadrilateral will be 31.5 sqaure unit.

Attachments:
Similar questions