Math, asked by Ghost0011, 3 months ago

Find the area of the
red triangle in terms
of X, if the black
quadrilateral is a
rectangle.
2x
2x
12 cm
9cm​

Answers

Answered by talasilavijaya
0

Answer:

Area of triangle is 35.8cm^{2}

Step-by-step explanation:

Though the diagram is not given, assumed the diagram for the question you need is same as that i've given here.

Let CEF be the triangle in the rectangle ABCD.

The measures of rectangle is 12cm\times 9cm

The opposite side of 12cm is divided into two equal parts, each equal to 2x

Therefore, 2x+2x=12\implies 4x=12\implies x=3cm

Let a, b and c be the sides of triangle, each side making a hypotenuse side in the rectangle. Applying Pythagorean theorem to each triangle:

1) the triangle AEF,

               a^{2}= x^{2} +(2x)^{2} =3^{2} +(2\times 3)^{2}=45

         \implies a=\sqrt[]{45} =6.7

2) the triangle BCF,

               b^{2}= 9^{2} +(2x)^{2} =9^{2} +(2\times 3)^{2}=81+36=117

         \implies b=\sqrt[]{117} =10.8

3) the triangle CEF,

               c^{2}= 12^{2} +(9-x)^{2} =12^{2} +(9- 3)^{2}=144+36=180

         \implies c=\sqrt[]{180} =13.41

Perimeter of the triangle, s=\frac{a+b+c}{2}

                                             =\frac{6.7+10.8+13.41}{2}=15.45cm

From Heron's formula of area of triangle

                  A=\sqrt[]{s(s-a)(s-b)(s-c)}

                     =\sqrt[]{15.45(15.45-6.7)(15.45-10.8)(15.45-13.41)}

                     =\sqrt[]{15.45(8.75)(4.65)(2.04)}

                     =\sqrt[]{1282.39}=35.8cm^{2}

Hence, area of triangle is 35.8cm^{2}

Attachments:
Similar questions