Math, asked by haohak88, 30 days ago

Find the area of the region bounded by the curve x=y(2-y) at y-axis.

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given curve is

\rm :\longmapsto\:x = y(2 - y)

Now, we first find the point of intersection with y -axis.

We know, on y - axis, x = 0.

So, on substituting the value in given curve, we get

\rm :\longmapsto\:0 = y(2 - y)

\bf\implies \:y = 0 \:  \: or \:  \: y = 2

Hence,

The point of intersection of curve x = y(2 - y) with y - axis are (0, 0) and (0, 2)

Now,

Required area with respect to y - axis is

\rm \:  =  \: \displaystyle\int_0^2 \rm x \: dy

\rm \:  =  \: \displaystyle\int_0^2 \rm y(2 - y) \: dy

\rm \:  =  \: \displaystyle\int_0^2 \rm (2y -  {y}^{2} ) \: dy

We know,

\underbrace{ \boxed{ \bf \:  \int \:  {x}^{n} \: dx  \: =  \:  \frac{ {x}^{n + 1} }{n + 1}  \:  +  \: c}}

\rm \:  =  \: \bigg(2 \:  \times \dfrac{ {y}^{1 + 1} }{1 + 1}  - \dfrac{ {y}^{2 + 1} }{2 + 1} \bigg)_0^2 \rm

\rm \:  =  \: \bigg(2 \:  \times \dfrac{ {y}^{2} }{2}  - \dfrac{ {y}^{3} }{3} \bigg)_0^2 \rm

\rm \:  =  \: \bigg({y}^{2}   - \dfrac{ {y}^{3} }{3} \bigg)_0^2 \rm

\rm \:  =  \: \bigg( {2}^{2} - \dfrac{ {2}^{3} }{3}  \bigg)  - \bigg(0 - 0 \bigg)

\rm \:  =  \: \bigg( 4 - \dfrac{8}{3}  \bigg)

\rm \:  =  \: \dfrac{12 - 8}{3}

\rm \:  =  \: \dfrac{4}{3}  \: sq. \: units

Hence,

 \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf \: Required \: area \: is \:  \frac{4}{3} \: sq. \: units}}

Attachments:
Similar questions