find the area of the region bounded by the curve y=x+1 and the lines x=2 and x=3
Answers
Answered by
0
Answer:
2=3+1 but I cannot understand your question
Step-by-step explanation:
iji
Answered by
1
Answer:
The area of the region bounded by the curve y=x+1 and the lines x=2 and x=3 is 3.5 square units.
Step-by-step explanation:
To get the area of the region bounded by the curve, we need to integrate the equation y = x + 1 between x = 2 and x = 3
We write this as follows:
₂∫³x + 1
Integrating the equation we get:
1/2x² + x
Now with the boundaries we have:
1/2x² + x |³₂
Substituting the values of x we get:
[0.5 × 3² + 3] - [0.5 × 2² + 2]
= 7.5 - 4 = 3.5
The area of the region bound by the curve is 3.5 square units.
Similar questions