Math, asked by rk1655396, 4 months ago

Find the area of the region bounded by x2 = 16y, y - axis and the lines y = 2 and y = 4.​

Answers

Answered by pulakmath007
14

SOLUTION

TO DETERMINE

The area of the region bounded by x² = 16y , y - axis and the lines y = 2 and y = 4.

EVALUATION

Here the given equation of the curve is

x² = 16y

Now in the graph ABCDA is the region bounded by x² = 16y , y - axis and the lines y = 2 and y = 4.

Hence the required area

\displaystyle   \sf{= \int\limits_{2}^{4} x \, dy }

\displaystyle   \sf{= \int\limits_{2}^{4}  \sqrt{16y}  \, dy }

\displaystyle   \sf{=4 \int\limits_{2}^{4}   {y}^{ \frac{1}{2} }  \, dy }

\displaystyle   \sf{=4    \times  \frac{ {y}^{ \frac{3}{2} } }{ \frac{3}{2} } \bigg|_{2}^{4}    }\:  \:  \: Sq. Unit

\displaystyle   \sf{=4    \times  \frac{2}{3}  \times  {y}^{ \frac{3}{2} }  \bigg|_{2}^{4}    } \: \:  \:  \: Sq. Unit

\displaystyle   \sf{= \frac{8}{3}  \times  \bigg( {4}^{ \frac{3}{2} }  - {2}^{ \frac{3}{2} } \bigg) }\:  \:  \: Sq. Unit

\displaystyle   \sf{= \frac{8}{3}  \times  \bigg(  8 - 2 \sqrt{2} \bigg) }\:  \:  \: Sq. Unit

\displaystyle   \sf{= \frac{8}{3} \bigg(  8 - 2 \sqrt{2} \bigg) } \:  \:  \: Sq. Unit

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Cos^-1(1-9^x/1+9^x) differentiate with respect to x

https://brainly.in/question/17839008

2. prove that - evey cauchy sequence is bounded.

https://brainly.in/question/26180669

Attachments:
Similar questions