Math, asked by sansazmi70, 6 months ago

Find the area of the region enclosed between the two circles x  y  and x   y  9

Answers

Answered by RajatPanwar706
2

Step-by-step explanation:

f(x)={cosx:0≤x≤π/4sinx:π/4≤x≤5π/4cosx:5π/4≤x≤2π}

A=∫

0

1

4−(x−2)

2

dx+∫

1

24

4−x

2

dx+

A=[

2

4−(x−2)

2

(x−2)

+

2

4

sin

−1

2

x−2

]

0

1

+[

2

4−(x)

2

(x)

+

2

4

sin

−1

2

x

]

1

2

A=2[(

2

3

(−1)

+2sin

−1

2

−1

)−((−2)(0)+2sin

−1

(−1))+((0)+2sin

−1

(1))−(

2

3

(1)

+2sin

−1

2

1

)]

A=2[

2

3

−2sin

−1

(

2

1

)+2sin

−1

(1)+2sin

−1

(1)−

2

3

−2sin

−1

(

2

1

)]

A=2[−

3

−4sin

−1

(

2

1

)+4sin

−1

(1)]

A=2[−

3

−4(π/6)+4(π/2)]

A=2[−

3

+4(π/3)]

A=−2

3

+8(π/3)

Attachments:
Answered by lochana22
1

Answer:

the answer for your question

Attachments:
Similar questions