Math, asked by don4819, 6 days ago

find the area of the region lying between the parabolas y^2=2x and x^2=2y​

Answers

Answered by mathdude500
19

\large\underline{\sf{Solution-}}

Given curves are

\rm :\longmapsto\: {y}^{2} = 2x -  -  - (1)

and

\rm :\longmapsto\: {x}^{2} = 2y -  -  - (2)

Let first the point of intersection of two given curves

\rm :\longmapsto\: {y}^{2} = 2x

\rm :\implies\:x = \dfrac{ {y}^{2} }{2}

Substituting this value in equation (2), we get

\rm :\longmapsto\:\dfrac{ {y}^{4} }{4}  = 2y

\rm :\longmapsto\: {y}^{4} = 8y

\rm :\longmapsto\: {y}^{4} - 8y = 0

\rm :\longmapsto\:y( {y}^{3} - 8) = 0

\bf\implies \:y = 0 \:  \:  \:  \: or \:  \:  \:  \: y = 2

Hence, points of intersection are

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf 2 & \sf 2 \end{array}} \\ \end{gathered}

Now, from given curves,

\rm :\longmapsto\: {y}^{2} = 2x

\bf\implies \:y =  \sqrt{2} \:   \sqrt{x}

Let assume that,

\bf\implies \:y_1 =  \sqrt{2} \:   \sqrt{x}

Also,

\rm :\longmapsto\: {x}^{2} = 2y

\bf\implies \:\:y = \dfrac{ {x}^{2} }{2}

Let assume that

\bf\implies \:\:y_2= \dfrac{ {x}^{2} }{2}

Now, See the graph in attachment, so we concluded from graph that

The required area is

\rm \:  =  \:  \: \displaystyle\int_0^{2}\sf y_1 \: dx \:  -  \: \displaystyle\int_0^{2}\sf y_2 \: dx

\rm \:  =  \:  \: \displaystyle\int_0^{2}\sf  \sqrt{2}  \:  \sqrt{x} \: dx \:  -  \: \displaystyle\int_0^{2}\sf \dfrac{ {x}^{2} }{2}  \: dx

We know ,

\boxed{ \bf{ \: \displaystyle\int\sf  {x}^{n}  \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c}}

So,

\boxed{ \bf{ \: \displaystyle\int\sf  {x}^{2}  \: dx \:  =  \:  \frac{ {x}^{3} }{3}  + c}}

and

\boxed{ \bf{ \: \displaystyle\int\sf   \sqrt{x}   \: dx \:  =  \:  \frac{ { 2\bigg(x \bigg)}^{ \dfrac{3}{2} } }{3}  + c}}

\rm \:  =  \:  \: \sqrt{2}   \bigg(\frac{ { 2\bigg(x \bigg)}^{ \frac{3}{2} } }{3} \bigg)_0^{2} - \dfrac{1}{2} \bigg(\dfrac{ {x}^{3} }{3}  \bigg)_0^{2}

\rm \:  =  \:  \: \dfrac{2 \sqrt{2} }{3}  {\bigg( 2\bigg) }^{\dfrac{3}{2} }  - \dfrac{1}{6}( {2}^{3})

\rm \:  =  \:  \: \dfrac{2 \sqrt{2} }{3}  {\bigg(  {( \sqrt{2} )}^{2} \bigg) }^{\dfrac{3}{2} }  - \dfrac{1}{6}(8)

\rm \:  =  \:  \: \dfrac{2 \sqrt{2} }{3}  {\bigg(  {( \sqrt{2} )}^{3} \bigg) }  - \dfrac{4}{3}

\rm \:  =  \:  \: \dfrac{2 \sqrt{2} }{3}  {\bigg(  2 \sqrt{2}  \bigg) }  - \dfrac{4}{3}

\rm \:  =  \:  \: \dfrac{8}{3}  - \dfrac{4}{3}

\rm \:  =  \:  \: \dfrac{4}{3}  \: square \: units

Attachments:
Answered by TrustedAnswerer19
53

Step-by-step explanation:

Given,

 \sf \:  {y}^{2}  = 2x \:  \:  -  -  - (1) \:  \:  \:  \: and \:  \:  \:  \:  \:  {x}^{2}  = 2y \\  \\  \bf \: let \:  \\  \sf \: y_1 =  {y}^{2}  = 2x \implies \: y_1 = y =  \sqrt{2x} \:  \:  \:  \:  \:  \: and \:  \\  \sf \: y_2 =  {x}^{2}  = 2y  \implies \: y_2 = y =  \frac{ {x}^{2} }{2}  \\  \\   \bf now \\  \sf \:   \:  \:  \:  \:  \:  \:  \:  \: {y}^{2}  = 2x \\  \sf \implies \: ( { \frac{ {x}^{2} }{2} })^{2}  = 2x \\   \sf \implies \:  \frac{ {x}^{4} }{4}  = 2x \\   \sf \implies \:  {x}^{3}  = 8 \\   \sf \implies \: x = 2 \\  \small{ \pink{ \bf \: putting \: the \: value \: of \: x = 2 \: in \: eqn.(1)}} \\  \\  \sf \:  {y}^{2}  = 2 \times 2 = 4 \\   \sf \implies \: y = 2 \\  \\  \bf \: both \:  parabola \:are\: passing \: through \\  \bf \: center \\  \\  \huge{ \bf \: now \: area} \\  \\ \displaystyle\int_0^{2}\sf (y_1 - y_2) \: dx \\   \\  = \displaystyle\int_0^{2}\sf( \sqrt{2x} \:   -  \frac{ {x}^{2} }{2} )dx \\  \\  ={ \huge{ [ }}\sqrt{2} \times  \frac{ {x}^{ \frac{3}{2} } }{ \frac{3}{2} }  -  \frac{ {x}^{3} }{2 \times 3} { \huge{ ]}} _0^2 \\  \\  = { \huge{ [ }} 2 \sqrt{2} \times  \frac{ {x}^{ \frac{3}{2} } }{3}  -  \frac{ {x}^{3} }{6}  { \huge{ ]}} _0^2 \\  \\  = 2 \sqrt{2}  \times  \frac{ {2}^{ \frac{3}{2} } }{3}  -  \frac{ {2}^{3} }{6}  - 0 - 0 \\  \\  =  \frac{4}{3}  \:   \sf{unit}^{2}

Short technique :

 \sf \: if \:  {y}^{2}  = 4ax \:  \:  \:  \: and \:  \:  \:  {x}^{2}  = 4ay \:  \:  \: are \: two \:  \\  \sf \: prabola \: then \: the \: area \: between \: them \: is \\  \\  \bf =  \frac{16 {a}^{2} }{ 3}  \:  {unit}^{2}

Attachments:
Similar questions