Math, asked by bappihazarika0946, 9 months ago

find the area of the region of the curve y2 =9x enclosed by the line y=x+2​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\text{Curve is $y^2=9x$}

\text{Line is $y=x+2$}

\textbf{To find:}

\text{Area of the region enclosed by the curve and the line}

\textbf{Solution:}

\textbf{To find the point of intersection:}

y^2=9x..........(1)

y=x+2..........(2)

\text{Using (2) in (1), we get}

(x+2)^2=9x

x^2+4+4x-9x=0

x^2-5x+4=0

(x-1)(x-4)=0

\implies\,x=1,4

\text{when $x=1$, $y=3$}

\text{when $x=4$, $y=6$}

\therefore\text{Points of intersection are $(1,3)$  and $(4,6)$}

\textbf{Required area}

=\int\limits_{a}^{b}[f(x)-g(x)]\,dx

=\int\limits_{1}^{4}[3\sqrt{x}-(x+2)]\,dx

=[3(\dfrac{x^\frac{3}{2}}{\frac{3}{2}})-\dfrac{x^2}{2}-2x]^{4}_{1}

=[2x^\frac{3}{2}-\dfrac{x^2}{2}-2x]\limits_{1}^{4}

=[2(4)^\frac{3}{2}-\dfrac{4^2}{2}-2(4)]-[2(1)^\frac{3}{2}-\dfrac{1^2}{2}-2(1)]

=[2(4)(2)-8-8]-[2-\dfrac{1}{2}-2]

=[16-8-8]-[2-\dfrac{1}{2}-2]

=0-[0-\dfrac{1}{2}]

=\dfrac{1}{2}\,\text{square units}

\text{}

Attachments:
Similar questions