Math, asked by talpadadilip417, 16 days ago

Find the area of the region \rm \left\{(x, y) \mid 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}
 \\ \rule{300pt}{0.1pt}
Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

The given region is

\rm \: \left\{(x, y) \mid 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\} \\

So, given curves are

\rm \: y =  {x}^{2} + 1 -  -  - (1) \\

and

\rm \: y =  x + 1 -  -  - (2) \\

Step :- 1 Point of intersection of two curves

\rm \:  {x}^{2} + 1 = x + 1 \\

\rm \:  {x}^{2} = x  \\

\rm \:  {x}^{2} - x = 0\\

\rm \: x(x - 1) = 0 \\

\bf\implies \:x = 0 \:  \: or \:  \: x = 1 \\

Hᴇɴᴄᴇ,

➢ Pair of points of intersection of two curves are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 1 \\ \\ \sf 1 & \sf 2 \end{array}} \\ \end{gathered}

Step :- 2 Curve Sketching

Curve y = \rm \: x^2+1 represents upper parabola having vertex at (1, 0) and axis along y - axis.

Curve y = x + 1 is a straight line which passes through the point (0, 1) and (1, 2) respectively.

{ See the attachment }

Step :- 3 Required Area

Required area bounded by the region

\rm \: \left\{(x, y) \mid 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\} \\

\rm \:  = \displaystyle\int_{0}^{1}\rm y_{(parabola)}dx \:  +  \: \displaystyle\int_{1}^{2}\rm y_{(line)}dx \\

\rm \:  = \displaystyle\int_{0}^{1}\rm ( {x}^{2}  + 1) \: dx \:  +  \: \displaystyle\int_{1}^{2}\rm (x + 1) \: dx \\

\rm \:  = \bigg[\dfrac{ {x}^{3} }{3} + x \bigg]_{0}^{1} + \bigg[\dfrac{ {x}^{2} }{2}  + x\bigg]_{1}^{2} \\

\rm \:  = \bigg[\dfrac{1}{3} + 1 - 0 - 0 \bigg] + \bigg[\dfrac{4}{2}  + 2 -  \frac{1}{2}  - 1\bigg] \\

\rm \:  = \bigg[\dfrac{4}{3} \bigg] + \bigg[2  + 1 -  \frac{1}{2}\bigg] \\

\rm \:  = \dfrac{4}{3} + 3 -  \frac{1}{2}\\

\rm \:  = \dfrac{8 + 18 - 3}{6} \\

\bf \:  = \dfrac{23}{6} \: square \: units \\

Attachments:
Answered by prashastirathore7
6

Answer:

hey here is your cutiee !!

thanks for your gift!!

but mere Ko bhi btau multiple tanx kese dete hai ???

please

Similar questions