Math, asked by ramvati1005, 2 months ago

find the area of the Right circular cone whose slant height is 10 cm and radius is 7 cm.​

Answers

Answered by gayenbanasree
1

Answer:

∙Slant height of right circular cone = 10 cm

∙Radius of right circular cone = 7 cm</p><p>

\rule{130}1

☯ To Find :

Curved surface area of cone = ?

\rule{130}1

☯ Formula used :

\huge\underline{\boxed{\gray{\bf CSA \:of right \: circular \:cone = \pi r l}}} \: \: \bigstar

CSAofrightcircularcone=πrl

\rule{130}1

☯ Solution :

\bigstar\:\underline{\boldsymbol{According\: to \:the\: Question\:now :}} ★

AccordingtotheQuestionnow:

\begin{gathered}:\implies\sf CSA = \pi r l \\\\\\:\implies\sf CSA = \dfrac{22}{ \cancel { 7}} \times { \cancel{7}} \times 10\:cm^2\\\\\\:\implies\underline{\boxed{\sf CSA = 220 cm^{2}}}\end{gathered}

:⟹CSA=πrl

:⟹CSA=

7

22

×

7

×10cm

2

:⟹

CSA=220cm

2

\therefore\:\underline{\textsf{The CSA of right circular cone is \textbf{220}}\: \sf cm^2}.∴

The CSA of right circular cone is 220cm

2

.

\rule{170}2

\begin{gathered}\boxed{\begin{minipage}{6 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cone :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:CSA = \pi rl\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:TSA = Area\:of\:Base + CSA\\{\quad\:\:\:\qquad=\pi r^2+\pi rl}\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\dfrac{1}{3}\pi r^2h\end{minipage}}\end{gathered}

Similar questions