Math, asked by Justin8591, 7 months ago

Find the area of the sector of a circle whose diameter is 84 cm and the angle at the centre is 135 degree

Answers

Answered by BloomingBud
38
  • The area of the sector is 2079 cm sq.

Given:

The diameter of the circle is 84 cm

The angle of the sector in the circle is (Ф) = 135°

To find:

The area of the sector

Now,

Radius = diameter/2

Radius (r) = 84/2 = 42 cm

The formula to find the area of the sector when radius and angle (Ф) are given:-

Area of sector = Ф/360 * πr² unit sq.

= 135/360 * 22/7 * 42 * 42

= 135/360 * 22 * 6 * 42

= 135/60 * 22 * 42

= 135/10 * 22 * 7

= 20790/10

= 2079 cm sq.

-------

If the angle (Ф) of the sector is given and radius of the circle is given and the question asks about the length of the arc of the sector (l)

  • Arc length (l) = Ф/360 * 2πr units
Answered by DARLO20
84

GIVEN :-

  • Tʜᴇ ᴅɪᴀᴍᴇᴛᴇʀ ᴏғ ᴛʜᴇ ᴄɪʀᴄʟᴇ ɪs "84" .

  • Aɴɢʟᴇ sᴜʙᴛᴇɴᴅs ᴀᴛ ᴛʜᴇ ᴄᴇɴᴛʀᴇ ɪs "135°" .

TO FIND :-

  • Tʜᴇ ᴀʀᴇᴀ ᴏғ ᴛʜᴇ sᴇᴄᴛᴏʀ .

SOLUTION :-

Wᴇ ʜᴀᴠᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

\huge\green\star Aʀᴇᴀ ᴏғ ᴛʜᴇ sᴇᴄᴛᴏʀ = \bf\red{\dfrac{\theta}{360}\times{\pi\:r^2}\:}

  • Radius = \bf{\dfrac{Diameter}{2}} = 84/2 = 42cm

  • \bf\red{\theta} = 135°

\purple\checkmark\:\bf{Area\:of\:the\:sector\:=\:\dfrac{135}{360}\times{\dfrac{22}{7}}\times{(42)^2}\:}

\rm{Area\:=\:\dfrac{135}{360}\times{\dfrac{22}{\cancel{7}}}\times{\cancel{42}}\times{42}\:}

\rm{Area\:=\:\dfrac{135}{\cancel{360}}\times{22}\times{\cancel{6}}\times{42}\:}

\rm{Area\:=\:\dfrac{\cancel{135}}{\cancel{60}}\times{22}\times{42}\:}

\rm{Area\:=\:\dfrac{9}{\cancel{4}}\times{\cancel{22}}\times{42}\:}

\rm{Area\:=\:\dfrac{9}{\cancel{2}}\times{11}\times{\cancel{42}}\:}

\rm{Area\:=\:9\times{11}\times{21}\:}

➳ Aʀᴇᴀ ᴏғ ᴛʜᴇ sᴇᴄᴛᴏʀ = 2079cm²

\huge\red{\therefore} Tʜᴇ ᴀʀᴇᴀ ᴏғ ᴛʜᴇ sᴇᴄᴛᴏʀ ɪs "2079m²" .

Similar questions