Math, asked by dev94433, 6 months ago

Find the area of the sector with a radius of 20 cm and an arc length of 88

Answers

Answered by Anonymous
3

Given:-

radius of the circle = 20cm

length of the arc = 88cm

Formula used:-

area \: of \: sector =  \frac{theta}{360}  \times \pi {r}^{2}

length \: of \: arc =  \frac{theta}{360}  \times 2\pi \times r

Solution:-

We have,

r = 20cm

l = 88cm

 =  >   \frac{theta}{360}  \times 2\pi \: r = 88 \\  =  > \frac{theta}{360}  \times 2 \times  \frac{22}{7}  \times 20 = 88

let theta be x

 \frac{x}{360}  \times  \frac{44}{7}  \times 2 = 88 \\  =  > x = 88 \times  \frac{7}{44}  \times  \frac{1}{20} \times 360 \\  =  > x =  \frac{7 \times 2}{20}   \times 360 \\  =  >x =  36\times 7

therefore, x = 252

Now,

area \: of \: sector =  \frac{252}{360}  \times  \frac{22}{7}  \times  {20}^{2}  \\  =  \frac{0.7 \times 22}{7}  \times 400 \\  =  \frac{22}{10}  \times 400 = 880 {cm}^{2}

Hence, area of the required sector = 880cm^2

Similar questions