Math, asked by Shreeya21, 10 months ago

Find the area of the segment AYB shown in the figure, if the radius of the circle is 21 cm and ∠ AOB = 120°

Answers

Answered by Anonymous
1

Answer:

\huge{\boxed{\mathscr\pink{♡}{\mathscr{answer}}\pink{♡}}}

In ∆AOB, draw a perpendicular line from O which intersect AB at M.

➡In ∆AOM, angle AMO = 90

➡angle OAM = 30

cos 30 = AM/AO

√3/2 = AM/21

AM = 21×√3/2

AB = 2(AM)

=2(21×√3/2)

=21√3

➡OM^2 = AO^2-AM^2

=21^2-(21√3/2)^2

=441-330.51

=110.48

OM =√110.48

OM =10.51

➡OM = 10.51cm

➡Area of ∆AOM = 1/2 AB × OM

=1/2 ×21√3 ×10.51

=191.14cm^2

➡Area of sector AOBY = 120πr^2/360

=120×21×21×22/2520

=462cm^2

➡Area of segment AYB = Area of sector OAYB -Area of∆OAB

=462-191.14

=270.86

➡Area of segment AYB is 270.86cm^2.

Answered by Skyllen
7

Given

  • Radius of circle(r) = 21cm
  • ∠AOB = 120°
  • OA = OB (radius)

 \\  \\

To Find

  • Area of segment AYB.

 \\  \\

Solution

Area of the segment AYB = (Area of sector OAYB) - (Area of OAB)...............eq.(1)

 \\

Now,

Area of sector OAYB,

  \tt =  \frac{ \theta}{360}  \times \pi \times r {}^{2}  \\  \\ \tt \:  =  \frac{120}{360}  \times  \frac{22}{7}  \times 21 \times 21 \\   \\  \tt=  \frac{12}{36}  \times  \frac{22}{7}  \times 441 \\  \\  \tt =  \frac{252}{252}   \times 441 \\  \\  \tt = 462cm {}^{2}.........eq.(2)  \\

✏ Draw OC ⊥ AB.

____________________________

In ∆ AMO and ∆ BMO,

OA = OB _______(radius)

OC = AC _______(common)

∠OCA = ∠OCB_______ (OC ⊥ AB)

∆ AMO ≅ ∆ BMO ( By RHS congruence )

 \\  \\

∠AOB = 120°

Then,

∠AOC = ∠BOC = 120/2 = 60°

 \\

In OCA,

Perpendicular = OC

Hypotenuse = OA

 \tt \implies \: cos \theta =  \frac{perpendicular}{hypotenuse}  \\  \\ \tt \implies cos \: 60 =  \frac{AC}{OA}  \\  \\ \tt \implies \:  \frac{1}{2}  =  \frac{OC}{21}  \\  \\ \tt \implies \: OC =  \frac{21}{2} cm \\   \\

Similarly,

 \tt \implies \: sin \: 60 =  \frac{AC}{OA}  \\  \\ \tt \implies \frac{ \sqrt{3} }{2}  =  \frac{AC}{21}  \\  \\ \tt \implies \: AC =  \frac{21 \sqrt{3} }{2}  \\  \\

★AB = 2AM

AB = 2(21√3/2)

AB = 21√3 cm

 \\  \\

Now,

\tt \implies \: area \: of \: triangle \: AOB =  \frac{1}{2}  \times AB \times OC \\  \\ \tt \implies \:  \frac{1}{2}  \times 21 \sqrt{3}  \times  \frac{21}{2}  \\  \\ \tt \implies (\frac{441}{4} ) \sqrt{3} cm {}^{2}.......eq.(3)  \\  \\

From equation 1, 2 and 3.

 \tt \implies \: Area  \: of  \: the  \: segment  \: AYB  \\   \\ = 462 -  (\frac{441}{4}  \times  \sqrt{3} )

 \large \implies \boxed {\boxed {\tt \blue {\frac{21}{4} (81 - 21 \sqrt{3} )cm {}^{2} }}}

Attachments:
Similar questions