Math, asked by shalinik02, 11 months ago

find the area of the segments of a circle of radius 42 cm with central angle 120°.

Answers

Answered by Rudra0936
3

Segment => Segment is the area between arc and one cord except the radius ( which is longest cord )

 \bold{given \:   \theta \:  = 120 \degree}

 \bold{radius = 42cm}

Now we have to calculate the area if the segment so formed✓

So, the Formula to calculate the area of the segment is

 \red{  \bold{\frac{  \theta}{360}  \times \pi \: r ^{2}  - r ^{2}  \times sin \frac{ \theta}{2}  \times cos \frac{ \theta}{2}}}

Let us calculate out

 =  >  \frac{120 \degree}{360 \degree}  \times  \frac{22}{7}  \times 42 ^{2}  - 42 ^{2}  \times sin \frac{120 \degree}{2}  \times cos \frac{120 \degree}{2}  \\  \\  =  >  \frac{1}{3}  \times 3.14 \times 1764 - 1764 \times sin60 \degree \times cos60 \degree \\  \\  =  >  \frac{5538.96}{3}  -  \frac{3055.33}{4}  \\  \\  =  >  \frac{4 \times 5538.96 - 3 \times 3055.33}{12}  \\  \\  =  >  \frac{22155.84 - 9165.99}{12}  \\  \\  =  >  \frac{12989.85}{12} \\  \\  =  > \red{  \huge{1082.48 \: cm ^{2} }}

The area if the segment is 1082.48 cm²

Similar questions