Math, asked by mehakkushwaha256, 5 months ago

find the area of the shaded portion . All corners are right angled ​

Attachments:

Answers

Answered by BrainlyPearl
28

\sf\Large{\underline{\underline{Answer:-}}}

Divided the shaded portion into rectangles. (in attachment)

And find there areas.

First, Finding area of whole figure.

Formula using here:-

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{length \times breadth}\:}}\end{gathered}

Substitute the Values,

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{19.6 \times 15}\:}}\end{gathered}

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{294m^{2} }\:}}\end{gathered}

{\bold\blue{⇝}} The area of whole figure is 294m²

─────────────────────

Now,

find the Area of all rectangles.

  • {\bold\green{Rectangle \: I}}

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{19.6 \times 2}\:}}\end{gathered}

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{39.2m{2} }\:}}\end{gathered}

The area of Rectangle I is 39.2m²

Now,

  • {\bold\red{Rectangle \: II}}

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{19.6 \times 2}\:}}\end{gathered}

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{39.2m^{2} }\:}}\end{gathered}

The area of Rectangle II is 39.2m².

Now

  • {\bold\blue{Rectangle \: III}}

15m - (2m + 2m)

15m - 4m

Breadth of rectangle III is 11m.

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{5.4\times 11}\:}}\end{gathered}

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{59.4m^{2} }\:}}\end{gathered}

The area of Rectangle III is 59.4m².

─────────────────────

At last,

  • To find shaded portion.

\LongrightarrowShaded portion = Area of whole figure – (area of all rectangles).

\LongrightarrowShaded portion = 294 – ( 39.2 + 39.2 + 59.4)

\LongrightarrowShaded portion = 294 – 137.8

{\bold\purple{Hence,}}

Area of Shaded portion = 156.2m².

Attachments:

Anonymous: Osm'
BrainlyPearl: Thankyou :)
Answered by HearthackerKarthik2
1

\sf\Large{\underline{\underline{Answer:-}}}

Divided the shaded portion into rectangles. (in attachment)

And find there areas.

First, Finding area of whole figure.

Formula using here:-

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{length \times breadth}\:}}\end{gathered}

Substitute the Values,

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{19.6 \times 15}\:}}\end{gathered}

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{294m^{2} }\:}}\end{gathered}

{\bold\blue{⇝}} The area of whole figure is 294m²

─────────────────────

Now,

find the Area of all rectangles.

{\bold\green{Rectangle \: I}}

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{19.6 \times 2}\:}}\end{gathered}

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{39.2m{2} }\:}}\end{gathered}

The area of Rectangle I is 39.2m²

Now,

{\bold\red{Rectangle \: II}}

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{19.6 \times 2}\:}}\end{gathered}

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{39.2m^{2} }\:}}\end{gathered}

The area of Rectangle II is 39.2m².

Now

{\bold\blue{Rectangle \: III}}

15m - (2m + 2m)

15m - 4m

Breadth of rectangle III is 11m.

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{5.4\times 11}\:}}\end{gathered}

\begin{gathered}\\\;\sf{:\rightarrow\;\;area\;=\;\bf{{59.4m^{2} }\:}}\end{gathered}

The area of Rectangle III is 59.4m².

─────────────────────

At last,

To find shaded portion.

\LongrightarrowShaded portion = Area of whole figure – (area of all rectangles).

\LongrightarrowShaded portion = 294 – ( 39.2 + 39.2 + 59.4)

\LongrightarrowShaded portion = 294 – 137.8

{\bold\purple{Hence,}}

Area of Shaded portion = 156.2m².

Similar questions