Math, asked by bachpantv8, 3 months ago

find the area of the shaded portion in each case​

Attachments:

Answers

Answered by shaktisrivastava1234
127

 \huge \fbox{Answer}

 \large \underline{ \bf{ \color{red}Given:}}

  \mapsto\sf{Length_{(outer  \: rectangle)}=60m}

  \mapsto\sf{Breadth_{(outer  \: rectangle)}=40m}

  \mapsto\sf{Length_{(inner  \: rectangle)}=56m}

  \mapsto\sf{Breadth_{(inner  \: rectangle)}=36m}

 \large \underline{ \bf{ \color{re}To  \: find:}}

 \leadsto \sf{Area \:  of  \: shaded \:  portion.}

 \large \underline{ \bf{ \color{blue}Formula \:  required:}}

 \dag{ \boxed{ \rm{Area_{(shaded  \: portion)}=Area_{(outer  \: rectangle)} - Area _{(inner  \: rectangle)}}}}

 \dag{ \boxed{ \rm{Area_{(rectangle)} = length \times breadth}}}

 \large \underline{ \bf{ \color{indigo}According  \: to \:  Question:}}

{ : : \implies{ \sf{Area_{(shaded  \: portion)}=Area_{(outer  \: rectangle)} - Area _{(inner  \: rectangle)}}}}

{ : : \implies{ \sf{Area_{(shaded  \: portion)}=60m \times 40m - 56m \times 36m}}}

{ : : \implies{ \sf{Area_{(shaded  \: portion)} = 2400 {m}^{2}  - 2016 {m}^{2} }}}

{ : : \implies{ \sf{Area_{(shaded  \: portion)} = 384{m}^{2} }}}

 \bf{Hence, }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \star \underline{ \boxed{ \rm{Area_{(shaded  \: portion)}=384 {m}^{2} }}}

Attachments:
Similar questions