Math, asked by bhumi649616, 1 month ago

find the area of the shaded portion in the given figure.​

Attachments:

Answers

Answered by SavageBlast
32

Given:-

  • A rectangle ABDF.

To Find:-

  • Area of the shaded portion

Formula Used:-

  • {\boxed{\bf{\red{Area\:of\:Rectangle = Length \times Height}}}}

  • {\boxed{\bf{\red{Area\:of\:Triangle = \dfrac{1}{2}\times Base \times Height}}}}

Solution:-

Firstly,

\sf :\implies Area\:of\:Rectangle\:ABDF = Length \times Height

\sf :\implies Area\:of\:Rectangle\:ABDF = 5 \times 8

\sf :\implies Area\:of\:Rectangle\:ABDF =40\:cm^2

Now,

\sf :\implies Area\:of\:Triangle\:GEF = \dfrac{1}{2}\times Base \times Height

\sf :\implies Area\:of\:Triangle\:GEF = \dfrac{1}{2}\times 6 \times 3

\sf :\implies Area\:of\:Triangle\:GEF = 3\times 3

\sf :\implies Area\:of\:Triangle\:GEF = 9\:cm^2

And,

\sf :\implies Area\:of\:Triangle\:CED = \dfrac{1}{2}\times Base \times Height

\sf :\implies Area\:of\:Triangle\:CED = \dfrac{1}{2}\times 2 \times 4

\sf :\implies Area\:of\:Triangle\:CED =2 \times 2

\sf :\implies Area\:of\:Triangle\:CED = 4\:cm^2

Finally,

\sf :\implies Area\:of\: Shaded\: Portion =Area\:of\:Rectangle\:ABDF - [Area\:of\:Triangle\:GEF + Area\:of\:Triangle\:CED]

\sf :\implies Area\:of\: Shaded\: Portion =40 - [9 + 4]

\sf :\implies Area\:of\: Shaded\: Portion =49 - 13

\sf :\implies Area\:of\: Shaded\: Portion =36\:cm^2

Hence, The Area of the Shaded Portion is 36 cm².

━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions