Math, asked by deshmukhpriya84, 3 months ago

Find the Area of ​​the Shaded Potion Figure 15.3​

Attachments:

Answers

Answered by kailashmannem
24

Question:-

  • A rectangule of length 14 cm and breadth 10 cm.

  • A semi circle inscribed in a rectangule whose diameter is 14 cm.

  • Diagram provided by the user who asked the question.

  • Find the shaded region.

Answer:-

  • Area of shaded region = Area of Rectangle - Area of semi circle.

  • First, Area of Rectangle = l * b

  • l * b = 14 * 10 = 140 cm²

  • Now, Area of semi circle,

  • As the semi circle stands on the length of Rectangle, it becomes the diameter of the semi circle.

  • Diameter of semi circle = 14 cm

  • Radius = d / 2 = 14 / 2 = 7 cm.

  • Area of semi circle = 1/2 ( πr² )

  • 1/2 * 22/7 * 7 * 7

  • 1/2 * 22 * 7 { Denominator of 22/7 and 7 gets cancelled }

  • 0.5 * 154

  • 77 cm²

  • Area of Shaded region = Area of Rectangle - Area of semi circle

  • 140 cm² - 77 cm²

  • 63 cm²

Conclusion:-

  • Therefore, Area of Shaded region = 63 cm².

Formulas used:-

  • Area of Rectangle = Length * breadth = l * b

  • Area of semi circle = 1/2 ( π * r² )

Answered by ItzBrainlyBeast
19

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{✯\; Given :-}}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Length of the Rectangle = 14cm }

\qquad\tt{:}\longrightarrow\large\textsf{Breadth of the rectangle = 10cm}

\qquad\tt{:}\longrightarrow\large\textsf{Diameter of the semi circle = 14cm}

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{✯\; To \; \; Find :-}}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Area of the shaded region = ? }

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{✯\; Formula :-}}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\boxed{\large\textsf{${\large\textsf\textcolor{purple}{Area}}_{\large\textsf\textcolor{purple}{( \; Rectangle \; )}} = \large\textsf\textcolor{purple}{l × b}$}}

\qquad\tt{:}\longrightarrow\boxed{\large\textsf{${\large\textsf\textcolor{purple}{Area}}_{\large\textsf\textcolor{purple}{( \; Semi Circle \; )}} $} \large\textsf\textcolor{purple}{ =$\cfrac{\large\textsf\textcolor{purple}{1}}{\large\textsf\textcolor{purple}{2}}$}\large\textsf\textcolor{purple}{× πr²}}

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{✯\; How \; \; To \; \; Solve :-}}}

\large\textsf{                                                               }

  • First we need to Find the Area of the given rectangle.
  • Then we find the Area of the Semi Circle.
  • And then we subtract the Area of the Semi Circle from the Area of the rectangle.
  • Then finally we would get the Area of the shaded area in the given figure.

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{✯\; Solution :-}}}

\large\textsf{                                                               }

\qquad\large\textsf{✯\; \;${\large\textsf{Area}}_{\large\textsf{( \; Rectangle \; )}} = \large\textsf{l × b}$}\\\\\\\qquad\large\textsf{= 14 × 10}\\\\\\\boxed{\large\textsf{${\large\textsf\textcolor{red}{Area}}_{\large\textsf\textcolor{red}{( \; Rectangle \; )}}  \large\textsf\textcolor{red}{= 140 sq. cm}$}}

\large\textsf{                                                               }

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\large\textsf{                                                               }

  • Radius = 1\2 Diameter = 1\2 × 14
  • Radius = 7cm

\large\textsf{                                                               }

\qquad\large\textsf{✯ \; \; ${\large\textsf{Area}}_{\large\textsf{( \; Semi Circle \; )}} $} \large\textsf{ =$\cfrac{\large\textsf{1}}{\large\textsf{2}}$}\large\textsf{× π × r²}\\\\\\\qquad\large\textsf{ =$\cfrac{\large\textsf{1}}{\large\textsf{2}} × \cfrac{\large\textsf{22}}{\large\textsf{7}}$\large\textsf{×7 × 7}}\\\\\\\qquad\large\textsf{ =$\cfrac{\large\textsf{1}}{\large\textsf{2}} × \cfrac{\large\textsf{22}}{\large\textsf{7}}$\large\textsf{49}}\\\\\\\qquad\large\textsf{= 11 × 7}\\\\\\\qquad\boxed{\large\textsf{${\large\textsf\textcolor{red}{Area}}_{\large\textsf\textcolor{red}{( \; Semi Circle \; )}}  \large\textsf\textcolor{red}{= 77 sq.cm}$}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\large\textsf{                                                               }

\qquad\large\textsf{✯\; \; ${\large\textsf{Area}}_{\large\textsf{( \; Shaded Area \; )}} = {\large\textsf{Area}}_{\large\textsf{( \; Rectangle \; )}} - {\large\textsf{Area}}_{\large\textsf{( \; Semi Circle \; )}}$}\\\\\\\qquad\large\textsf{= 140 - 77}\\\\\\\qquad\boxed{\large\textsf{${\large\textsf\textcolor{red}{Area}}_{\large\textsf\textcolor{red}{( \; Shaded Area \; )}}  \large\textsf\textcolor{red}{= 63 sq.cm}$}}

\large\textsf{                                                               }

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\large\textsf{                                                               }

Area of the Shaded Area = 63 cm².

\large\textsf{                                                               }

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions