Find the area of the shaded region
Answers
Answer:
Area of the shaded region = 54 cm²
Step-by-step explanation:
i) In ∆ AOB,
<AOB = 90°,
and OA = 12 cm, OB = 5 cm,
/* By Pythagoras theorem :
AB² = OA² + OB²
= 12² + 5²
= 144 + 25
= 169
=> AB = √169 = √13² = 13 cm,
ii) In ∆AOB , Base (OA) = 12 cm,
Height (OB) = 5 cm
/* By Heron's formula:
iii ) In ∆ABC , BC = a = 15 cm ,
AC = b = 14 cm,
AB = c = 13 cm
s-a = 21 - 15 = 6 ,
s-b = 21 - 14 = 7 ,
s-c = 21 - 13 = 8 ,
Therefore,
Area of the shaded region = ∆ABC - ∆AOC
= 84 cm² - 30 cm²
= 54 cm²
•••♪
Step-by-step explanation:
Area of the shaded region = 54 cm²
Step-by-step explanation:
i) In ∆ AOB,
<AOB = 90°,
and OA = 12 cm, OB = 5 cm,
/* By Pythagoras theorem :
AB² = OA² + OB²
= 12² + 5²
= 144 + 25
= 169
=> AB = √169 = √13² = 13 cm,
ii) In ∆AOB , Base (OA) = 12 cm,
Height (OB) = 5 cm
/* By Heron's formula:
\begin{gathered}Area \: of \: \triangle AOB = \frac{1}{2} bh\\=\frac{1}{2}\times 12\times 5\\=6\times 5\\=30 \: cm^{2}\:---(1)\end{gathered}
Areaof△AOB=
2
1
bh
=
2
1
×12×5
=6×5
=30cm
2
−−−(1)
iii ) In ∆ABC , BC = a = 15 cm ,
AC = b = 14 cm,
AB = c = 13 cm
\begin{gathered}s = \frac{a+b+c}{3}\\=\frac{15+14+13}{3}\\=\frac{42}{2}\\=21\end{gathered}
s=
3
a+b+c
=
3
15+14+13
=
2
42
=21
s-a = 21 - 15 = 6 ,
s-b = 21 - 14 = 7 ,
s-c = 21 - 13 = 8 ,
\begin{gathered}Area\:of \: \triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}\\=\sqrt{21\times 6 \times 7 \times 8 }\\=84\:--(2)\end{gathered}
Areaof△ABC=
s(s−a)(s−b)(s−c)
=
21×6×7×8
=84−−(2)
Therefore,
Area of the shaded region = ∆ABC - ∆AOC
= 84 cm² - 30 cm²
= 54 cm²