Math, asked by masterchefanusha, 9 months ago

Find the area of the shaded region:)

Attachments:

Answers

Answered by shaan4146
1

Answer:

first get the area of whole triangle

then get area of the non shaded portion

then subtract both areas

that will be the area if the shaded part

Answered by Anonymous
1

To find:

\sf{The \ area \ of \ the \ shaded \ region. }

Solution:

\sf{By \ heron's \ formula}

\sf{In \ \triangle ABC,}

\sf{s=\dfrac{20+52+48}{2}}

\sf{s=60}

\sf{A(\triangle ABC)=\sqrt{60(60-20)(60-48)(60-52)}}

\sf{\therefore{A(\triangle \  ABC)=\sqrt{60\times40\times12\times8}}}

\sf{\therefore{A(\triangle ABC)=\sqrt{230400}}}

\sf{\therefore{A(\triangle ABC)=480 \ cm^{2}}}

\sf{In \ \triangle AOB,}

\sf{OA=\sqrt{20^{2}+16^{2}}}

\sf{By \ pythagoras \ theorem}

\sf{\therefore{OA=\sqrt{656}}}

\sf{\therefore{OA=25.6 \ cm}}

\sf{A(\triangle \ AOB)=\dfrac{1}{2}\times16\times25.6}

\sf{\therefore{A(\triangle \ AOB)=204.8 \  cm^{2}}}

\sf{Now,}

\sf{Area \ of \ shaded \ region=A(\triangle \ ABC)-A(\triangle \ AOB)}

\sf{\therefore{Area \ of \ shaded \ region=480-204.8}}

\sf{\therefore{Area \ of \ shaded \ region=275.2 \ cm^{2}}}

\sf\purple{\tt{The \ area \ of \ shaded \ region \ is \ 275.2 \ cm^{2}}}

Similar questions