find the area of the shaded region AD = 12cm , BD=16cm, B= 48 And C=52cm
Answers
For get answer we have to find area of ∆ABD and ∆ABC after substract .
Area of ∆ABD :-
In ∆ABD ,
angle D = 90°
area :)
Area of ∆ABC :-
semi perimeter :)
Now subtract :-
mark as brainliest answer and plz follow me.
{\underline{\underline{\huge{Answer ~:}}}}
Answer :
For get answer we have to find area of ∆ABD and ∆ABC after substract .
Area of ∆ABD :-
In ∆ABD ,
{{AB}^{2}={AD}^{2}+{AB}^{2}}AB
2
=AD
2
+AB
2
\begin{lgathered}= \sqrt{ {(16)}^{2} + {(12)}^{2} } \\ \\ = \sqrt{400} \\ \\ = 20 \: cm\end{lgathered}
=
(16)
2
+(12)
2
=
400
=20cm
angle D = 90°
area :)
\begin{lgathered}= \frac{1}{2} \times base \times height \\ \\ = \frac{1}{2} \times 12 \times 16 \\ \\ = 96 { \: cm}^{2}\end{lgathered}
=
2
1
×base×height
=
2
1
×12×16
=96cm
2
Area of ∆ABC :-
semi perimeter :)
\begin{lgathered}= \frac{48 + 52 + 20}{2} \\ \\ = 60 \: cm\end{lgathered}
=
2
48+52+20
=60cm
\begin{lgathered}= \sqrt{s(s - a)(s - b)(s - c)} \\ \\ = \sqrt{60 \times 12 \times 8 \times 40} \\ \\ = 480 { \: cm}^{2}\end{lgathered}
=
s(s−a)(s−b)(s−c)
=
60×12×8×40
=480cm
2
Now subtract :-
\begin{lgathered}= (480 - 96) { \: cm}^{2} \\ \\ = 384 { \: cm}^{2}\end{lgathered}
=(480−96)cm
2
=384cm
2
{\color{Red}{Answer~is~{384cm}^{2}}
mark as brainliest answer and plz follow me.