Math, asked by venkategowda27, 9 months ago

find the area of the shaded region for the given figure.​

Attachments:

Answers

Answered by BrainlyConqueror0901
16

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:shaded\:region=112\:cm^{2}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Side \: of \: square = 14 \: cm \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt: \implies Area \: of \: shaded \: region =?

• According to given question :

 \bold{In \:  \triangle \: ABC} \\  \tt: \implies  {AC}^{2}   =  {AB}^{2} +  {BC}^{2}   \\  \\ \tt: \implies  {AC}^{2}  =  {14}^{2}  +  {14}^{2}  \\  \\ \tt: \implies  {AC}^{2}  = 196 + 196 \\  \\ \tt: \implies  {AC}^{2}  =392 \\  \\ \tt: \implies  {AC} = \sqrt{392}  \\  \\  \green{\tt: \implies  {AC} =14 \sqrt{2}  \: cm} \\  \\  \bold{As \: we \: know \: that} \\  \tt: \implies Area \: of \: shaded \: region = Area \: of \: quadrant - Area \: of \: square \\  \\ \tt: \implies Area \: of \: shaded \: region =  \frac{1}{4}\pi {r}^{2}  -  {side}^{2}  \\  \\ \tt: \implies Area \: of \: shaded \: region = \frac{1}{4}  \times  \frac{22}{7}  \times  {(14 \sqrt{2} )}^{2}  -  {14}^{2}  \\  \\ \tt: \implies Area \: of \: shaded \: region = \frac{22}{28}  \times 392 - 196 \\  \\ \tt: \implies Area \: of \: shaded \: region =22 \times 14 - 196 \\  \\ \tt: \implies Area \: of \: shaded \: region =308 - 196 \\  \\  \green{\tt: \implies Area \: of \: shaded \: region =112 {  \: cm}^{2} }

Attachments:
Answered by Anonymous
8

\red{\underline{\underline{Answer:}}}

\sf{Area \ of \ shaded \ region \ is \ 112 \ cm^{2}}

\sf\orange{Given:}

\sf{For \ square,}

\sf{\implies{Side=14 \ cm}}

\sf\pink{To \ find}

\sf{Area \ of \ the \ shaded \ region.}

\sf\green{\underline{\underline{Solution:}}}

\sf{For \ square,}

\boxed{\sf{Area \ of \ square=side^{2}}}

\sf{Area \ of \ square=14^{2}}

\sf{\therefore{Area \ of \ square=196 \ cm^{2}...(1)}}

\boxed{\sf{Diagonal \ of \ square=Side\times\sqrt2}}

\sf{\therefore{Diagonal \ of \ square=14\sqrt2 \ cm}}

\sf{For \ sector,}

\sf{\theta=90°...All \ angles \ of \ square \ are \ 90°}

\sf{Radius (r)=Diagonal \ of \ square.}

\sf{\therefore{Radius (r)=14\sqrt2 \ cm}}

\boxed{\sf{Area \ of \ sector=\frac{\theta}{360}\times\pi\times \ r^{2}}}

\sf{\therefore{Area \ of \ sector=\frac{90}{360}\times\frac{22}{7}\times(14\sqrt2)^{2}}}

\sf{\therefore{Area \ of \ sector=22\times14}}

\sf{\therefore{Area \ of \ sector=308 \ cm^{2}...(2)}}

\sf{Area \ of \ shaded \ region}

\sf{=Area \ of \ sector \ - \ Area \ of \ square}

\sf{...from \ (1) \ and \ (2)}

\sf{=308-196}

\sf{\therefore{Area \ of \ shaded \ region=112 \ cm^{2}}}

\sf\purple{\tt{\therefore{Area \ of \ shaded \ region \ is \ 112 \ cm^{2}}}}

Attachments:
Similar questions