Find the area of the shaded region. Here ABC is a right-angled
triangle where AB = 8 cm, BC = 6 cm and ADC, BEC and AFB are
semicircles.
Attachments:
Answers
Answered by
36
Solution :
In ∆ ABC
→ AB² + BC² = AC²
→ 8² + 6² = AC²
→ AC² = 64 + 36
→ AC = √100
→ AC = 10 cm
Area of ∆ ABC
⇒ Area = 1/2 × Base × Height
⇒ Area = 1/2 × 6 × 8
⇒ Area = 3 × 8
⇒ Area = 24 cm²
Area of BEC
⇒ Area = 1/2 × πr²
⇒ Area = 1/2 × 3.14 × 3 × 3
⇒ Area = 1/2 × 28.26
⇒ Area = 14.13 cm²
Area of AFB
⇒ Area = 1/2 × πr²
⇒ Area = 1/2 × 3.14 × 4 × 4
⇒ Area = 1/2 × 50.24
⇒ Area = 25.12 cm²
Area of ADC
⇒ Area = 1/2 × πr²
⇒ Area = 1/2 × 3.14 × 5 × 5
⇒ Area = 1/2 × 78.5
⇒ Area = 39.25 cm²
Area of shaded region
→ 24 + 14.13 + 25.12 + 39.25
→ 102.5 cm²
Similar questions