Math, asked by chintudumpa07017, 9 months ago

FIND THE AREA OF THE SHADED REGION IN FIGURE, WHERE ABCD IS A SQUARE OF SIDE 10CM. AND SEMICIRCLE ARE DRAWN WITH EACH SIDE OF THE SQUARE AS DIAMETER (USE π=3.14​

Attachments:

Answers

Answered by amitkumar44481
18

Given Figure :

\setlength{\unitlength}{1.05 cm}}\begin{picture}(12,4)\thicklines\put(0,1){$.$}</p><p>\put(1,1){\line(1,0){4}}\put(1,5){\line(1,0){4}}\put(1,1){\line(0,1){4}}\put(5,5){\line(0,-1){4}}\qbezier(3,3)(3.5,4.5)(5,5)\qbezier(3,3)(4.5,3.5)(5,5)\qbezier(3,3)(2.5,4.5)(1,5)\qbezier(3,3)(1.5,3.5)(1,5)\qbezier(3,3)(1.5,2.5)(1,1)\qbezier(3,3)(2.5,1.5)(1,1)\qbezier(3,3)(4.5,2.5)(5,1)\qbezier(3,3)(3.5,1.5)(5,1)\end{picture}

Answer:

Area of shaded design is 57 cm².

Formula Use,

 \red \star \:  \tt area \: of \: square ={ (sides) }^{2} \\ \red \star \: \tt area \:of\: Semicircle = \frac{\pi {r}^{2}}{2} \\ \red \star \: \tt area \:of \:circle = \pi {r}^{2}

Calculation :

We have,

4 Semicircle given above figure 1.

so,

  \leadsto\tt \cancel4 \times   \frac{ \pi {r}^{2} }{ \cancel2} \\  \leadsto \tt2 \times 3.14 \times 5 \times 5. \\  \leadsto \tt157\: {cm}^{2}.

Now,

Area of Square

 \tt  { (sides) }^{2}  = 10 \times 10. \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt = 100 \:  {cm}^{2} .

Required area find,

(Area of 4 Semicircle)-( Area of Square )

We get,

 \leadsto \tt157 - 100. \\ \tt\leadsto57 \:  {cm}^{2}  . \\

Therefore, the required shaded design is 57 cm².

Attachments:
Similar questions