Find the area of the shaded region [in terms of π(pi)] of the given figure.
Attachments:
![](https://hi-static.z-dn.net/files/d9c/bd397073955e7c894cf16bbdc6cd9ffd.png)
Answers
Answered by
2
Answer:
How do I find area shaded region?
I'm assuming that the sector at C has the same radius of 7cm .[Math Processing Error]
The area of a sector of a circle with radius r subtending an angle θ (in radians) is :
A=12r2θ
Now, let the sector at A have area A1, at B have area A2 and at C have area A3 .
A1=\asect. 1=12⋅(72)∠BAC(1)
A2=\asect. 2=12⋅(72)∠CBA(2)
A3=\asect. 3=12⋅(72)∠ACB(3)
A4=\aΔABC=1214⋅24=168(4)
\ashaded=A4−A1−A2−A3
\ashaded=168−722(∠CBA+∠BAC+∠ACB)
Using Angle Sum Property:
\ashaded=168−722(π)
\ashaded=168−49π2
Which is about
91.030979987..
Similar questions
Math,
3 months ago
Geography,
3 months ago
Math,
3 months ago
Math,
6 months ago
English,
6 months ago
Business Studies,
1 year ago
Computer Science,
1 year ago