Math, asked by StarTbia, 1 year ago

Find the area of the shaded region in the figure, given in which two circles with centres A and B touch each other at the point C. If AC = 8 cm. and AB = 3 cm.

Attachments:

Answers

Answered by Anonymous
38
Hello friends...
here is your answer ✌✌✌✌✌

hope it help you...
Attachments:

iamalpha: bss smjho ho gya
Answered by Anonymous
29

Heya !!

Here is your answer..

Given,

AC = 8 cm,

AB = 3 cm,

BC = 8-3 = 5 cm.

Now,   \: area \:  of  \: bigger \:  circle  =  \: \pi \:  {r}^{2}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:   \:  \:  \:  \: = \pi \times  {8}^{2}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \:  \:    \: = \: 64\pi \:  {cm}^{2}

Now, \:  area \:  of  \: smaller \:  circle  =  \pi \:  {r}^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  = \pi \times  {5}^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  = 25\pi \:  {cm}^{2}

So, area of shaded region = area of bigger circle - area of smaller circle

 = 64\pi   -  \: 25\pi

 = 39\pi \:  {cm}^{2}

Hope it helps..

Similar questions