Math, asked by amarv8763gmailcom, 19 days ago

find the area of the shaded region in the following figure

please explain me step by step ​

Attachments:

Answers

Answered by jaymishra0017
0

Answer:

-  आवृत्ति  (v)(v) =   5.17\times 10^{14} s^{-1}5.17×1014s−1

- तरंग संख्या  (\overline{v})(v) =   1.73\times 10^{6}m^{-1}1.73×106m−1                              

    Explanation:

   दिया गया है कि ,

         पीले प्रकाश का तरंग दैर्घ्य = 580 nm =580\times 10^{-9}m=580nm=580×10−9m

       तथा ,   प्रकाश का वेग (c)= 3\times 10^{8}(c)=3×108

           अब ,                       आवृत्ति (v) = \frac{c}{\lambda }= \frac{3\times 10^{8}}{580\times 10^{-9}}(v)=λc=580×10−93×108 s^{-1}s−1 = 5.17\times 10^{14} s^{-1}5.17×1014s−1

           अतः                          आवृत्ति  (v)(v) =   5.17\times 10^{14} s^{-1}5.17×1014s−1  

      और  ,             तरंग संख्या  (\overline{v})(v) = \frac{1}{\lambda } = \frac{1}{580\times 10^{-9}}m^{-1}λ1=580×10−91m−1 = 1.73\times 10^{6}m^{-1}1.73×106m−1

         अतः                  तरंग संख्या  (\overline{v})(v) =   1.73\times 10^{6}m^{-1}1.73×106m−1                              

   

                                                   

Answered by tagorbisen
0

Step-by-step explanation:

Side of square = (7+7) = 14cm

.: Area of square = (14)² = 196 cm²

For a sector,

θ (Angle of square) = 90°

radius (r) = 7cm

\begin{gathered}area \: of \: sector = \frac{θ}{360} \times \pi {r}^{2} \\ \: \: = \frac{90}{360} \times \frac{22}{7} \times {7}^{2} \\ \: \: = \frac{1}{4} \times \frac{22}{7} \times 49 \\ = \frac{11 \times 7}{2} \\ \frac{77}{2} {cm}^{2} \end{gathered}

areaofsector=

360

θ

×πr

2

=

360

90

×

7

22

×7

2

=

4

1

×

7

22

×49

=

2

11×7

2

77

cm

2

All four sectors are congruent

i.e. with 7 cm radius

\begin{gathered}total \: area \: of \: all \: sectors \: \\ = 4 \times area \: of \: sector \\ = 4 \times \frac{77}{2} \\ = 154 {cm}^{2} \end{gathered}

totalareaofallsectors

=4×areaofsector

=4×

2

77

=154cm

2

Area of shaded region

= Area of square - total area of all sectors

= 196 - 154

= 42cm²

___________________________

b) Area of shaded region

= Area of circle - Area of rectangle

= 132.67 - 60

= 72.67 cm²

Similar questions