Math, asked by amisha42, 1 year ago

FIND THE AREA OF THE SHADED REGION in the given figure , where a circular arc of radius 7cm has been drawn with vertex o of an equilateral triangle oab of side 12 cm , as centre

Attachments:

Answers

Answered by wifilethbridge
58

Answer:

190.57  sq.cm

Step-by-step explanation:

Side of equilateral triangle = 12 cm

Area of equilateral triangle =\frac{\sqrt{3}}{4}a^2

                                             =\frac{\sqrt{3}}{4}(12)^2

                                             =62.35

All angles of equilateral triangle is of 60°

So, ∠AOB = 60°

Radius of circle = 7 cm

Area of sector of circle included in triangle =\frac{\theta}{360}\pi r^2

                                                                         =\frac{60}{360} \times 3.14 \times 7^2

                                                                         =25.64

Area of circle = \pi r^2

                      = 3.14 \times 7^2    

                      = 153.86    

So, Area of shaded region = Area of triangle +Area of circle - Area of sector

                                            =62.35+153.86-25.64

                                            =190.57  sq.cm

Hence the area of the shaded region is 190.57  sq.cm                                                                        

Answered by saikrishna1021
10

Answer:

Here is your answer

Step-by-step explanation:

Please mark as brainliest answer

Attachments:
Similar questions