Math, asked by stormthunder769, 8 months ago

Find the area of the shaded region,where a circular arc of radius 6cm has been drawn with vertex O of an equilateral triangle OAB of side 12cm as centre

Attachments:

Answers

Answered by menariyamotilal178
0

Answer:

  • AB=OA+OB
  • AB=6+6
  • AB=12
  • OAB=12
  • AB=12/3
  • AB =4
  • OA=4
  • OB=4

Answered by Anonymous
4

Answer:

\sf{Area\:of\:shaded\:region=(36\sqrt3+\frac{660}{7})cm^{2}

Step-by-step explanation:

\sf{Area\:of\:shaded\:region=Area\:of\:triangle(60)+Area\:of\:major\:sector

                                \sf{=\frac{\sqrt3}{4}(a)^{2}+\frac{360-\theta}{360}\times\pi r^{2}

                                \sf{=\frac{\sqrt3}{4}(12)^{2}+\frac{360-60}{360}\times\frac{22}{7}\times(12)^{2}

                                \sf{=\frac{\sqrt3}{4}\times12\times12+\frac{360-60}{360}\times\frac{22}{7}\times12\times12

                                \sf{=\sqrt3\times3\times12+30\times\frac{22}{7}}

                                \sf{=(36\sqrt3+\frac{660}{7})cm^{2}

\bf\pink{\underline{Please\:mark\:it\:as\:brainlist\:answer}

Similar questions