Math, asked by Ananyasvishnoi, 4 months ago

Find the area of the shaded regions:

Attachments:

Answers

Answered by AdityaRohan
2

Step-by-step explanation:

Usually, we would subtract the area of a smaller inner shape from the area of a larger outer shape in order to find the area of the shaded region.

Answered by BrainlyPearl
25

\sf\Large{\underline{\underline{Answer:-}}}

Let us find the diagonal by Pythagoras theorm

Where,

  • Base = 12cm
  • Perpendicular = 5cm
  • Hypotenuse = ?

Formula:-

\bf{\underline\green{H² \: = \: P² \: + \: B²}}

Substitute the values,

H² = 5² + 12²

H² = 25 + 144

H² = 169

H = \sqrt{169}

H = 13cm

{\bold\blue{Since,\: Diameter}} of circle = 13cm

Now, finding radius

\begin{gathered}\\\;\sf{:\rightarrow\;\; Radius\;=\;\bf{\dfrac{Diameter}{2}\:}}\end{gathered}

\begin{gathered}\\\;\sf{:\rightarrow\;\; Radius\;=\;\bf{\dfrac{13}{2}\:}}\end{gathered}

{\bold\blue{Radius}} = 6.5cm

Area of circle:

We know that,

Area = \huge\bf{\underline\green{π\:r²}}

Substitute the values.

\begin{gathered}\\\;\sf{:\rightarrow\;\;Area\;of\;circle\;=\;\bf{\dfrac{22}{7}\:\times\:6.5\:\times\:6.5}}\end{gathered}

\begin{gathered}\\\;\sf{:\rightarrow\;\;Area\;of\;circle\;=\;\bf{\dfrac{22}{7}\:\:\times\:42.25}}\end{gathered}

\begin{gathered}\\\;\sf{:\rightarrow\;\; Area\;=\;\bf{\dfrac{929.5}{7}\:}}\end{gathered}

Area = \sf{\cancel\dfrac{929.5}{7}} = 132.78 cm

{\bold\blue{Now,}}

Area of rectangle:-

Where,

  • Length = 12cm
  • Breadth = 5cm

We know that,

Area = \bf{\underline\green{length \: × \: breadth}}

\LongrightarrowArea = 12 × 5

\LongrightarrowArea = 60cm

Now to find the shaded region,

Shaded region = Area of Circle – Area of Rectangle

Shaded region = 132.78 – 60

Shaded region = 72.78cm.

{\bold\blue{Hence,}}

Area of shaded region = 72.78cm

Similar questions