Math, asked by dassohagsd22, 17 days ago

Find the area of the smaller segment cut off from the area bounded by the circle x²+y²=16 by x+y =4​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given curves are

\rm \:  {x}^{2} +  {y}^{2} = 4 -  -  - (1) \\

and

\rm \: x + y = 4 -  -  - (2) \\

Step :- 1 Point of intersection :

From equation (2) we have y = 4 - x

Substitute this value of y in equation (1), we get

\rm \:  {x}^{2} +  {(4 - x)}^{2} = 16 \\

\rm \:  {x}^{2} + {x}^{2} + 16 - 8x  = 16 \\

\rm \:  2 {x}^{2} - 8x = 0  \\

\rm \: 2x(x - 4) = 0 \\

\rm\implies \:x = 0 \:  \: or \:  \: x = 4 \\

Hᴇɴᴄᴇ,

➢ Pair of points of intersection of equation (1) and (2) are shown in the below table :

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 4 \\ \\ \sf 4 & \sf 0 \end{array}} \\ \end{gathered}

Step :- 2 Curve Sketching

Equation (1) represents the equation of circle having centre (0, 0) and radius 4 units.

Equation (2) represents the equation of line which passes through the points (0, 4) and (4, 0)

See the attachment.

Step :- 3 Evaluation of Area

So, required smaller area bounded between two curves with respect to x axis is

\rm \:  = \displaystyle\int_{0}^{4}\rm\ [y_{(circle)} - y_{(line)}] \: dx \\

\rm \:  = \displaystyle\int_{0}^{4}\rm\ [ \sqrt{16 -  {x}^{2} } - (4 - x )] \: dx \\

\rm \:  = \displaystyle\int_{0}^{4}\rm\ [ \sqrt{ {4}^{2}  -  {x}^{2} } - (4 - x )] \: dx \\

\rm \:  = \bigg[\dfrac{x}{2} \sqrt{ {4}^{2} -  {x}^{2} } +  \dfrac{ {4}^{2} }{2} {sin}^{ - 1}   \dfrac{x}{4} - 4x +  \dfrac{ {x}^{2} }{2}  \bigg]_{0}^{4} \\

\rm \:  = \bigg[0 +  \dfrac{ {4}^{2} }{2} {sin}^{ - 1}   \dfrac{4}{4} - 16 +  \dfrac{ 16 }{2}\bigg] - (0 + 0 - 0 + 0) \\

\rm \:  = 8  \times \dfrac{\pi}{2}  - 16 +  8 \\

\rm \:  = 4\pi - 8 \\

\rm \:  = 4(\pi - 2) \: square \: units \\

Hence,

\rm\implies \:\boxed{ \rm{ \:Required \: area \: \rm \:  = 4(\pi - 2) \: square \: units \:  \: }} \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:\displaystyle\int \rm \:  \sqrt{ {a}^{2}  -  {x}^{2} }dx =  \frac{x}{2} \sqrt{ {a}^{2}  -  {x}^{2} } +  \frac{ {a}^{2} }{2} {sin}^{ - 1} \frac{x}{a} + c \: }} \\

\boxed{ \rm{ \:\displaystyle\int \rm \:   {x}^{n}dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}   + c \: }} \\

Attachments:
Similar questions