Math, asked by vishalhatti28, 4 months ago

Find the area of the square formed by points (1,7) (4,2) (-1,-1) and (-4,4) please solve this no scam I need help please solve this fast. please​

Answers

Answered by mathdude500
2

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

Let the coordinates be represented as

A(1,7), B(4,2), C(-1,-1) and D(-4,4)

Since, ABCD is a square.

─━─━─━─━─━─━─━─━─━─━─━─━─

There are two methods to find the area of square.

Method :- 1.

  • Using Distance Formula

Method :- 2

  • Using area of triangle

─━─━─━─━─━─━─━─━─━─━─━─━─

Using Distance Formula

We know,

Distance between two points A and B is given by

\bf\implies \:AB =  \sqrt{ {(x_2-x_1)}^{2}  +  {(y_2-y_1)}^{2} }

where coordinates of A and B are

 \tt \: A(x_1, \: y_1) \:  and  \: B(x_2, \: y_2)

So, Distance between A(1, 7) and B(4, 2) is

\bf\implies \:AB =  \sqrt{ {(4 - 1)}^{2}  +  {(2 - 7)}^{2} }

\bf\implies \:AB =  \sqrt{ {(3)}^{2}  +  {( - 5)}^{2} }

\bf\implies \:AB = \:  \sqrt{9 + 25}

\bf\implies \:AB = \:  \sqrt{34}  \: units

Now,

We know,

 \bf \: Area \:  of  \: square  \:  =  {(side)}^{2}

 \bf \: Area \:  of  \: square  \:  =  {(AB)}^{2}

 \bf \: Area \:  of  \: square  \:  =  {( \sqrt{34} )}^{2}

 \boxed{ \blue{ \bf \: Area \:  of  \: square  \:  =  \: 34 \: sq. \: units}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Using Area of Triangle

Let us find the area of triangle ABC

We know,

\bf \ Area =\dfrac{1}{2}  [x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]

where

\begin{gathered}\begin{gathered} \sf {(x_{1} , y_{1} )=(1,7)}\end{gathered}\end{gathered} \\ \begin{gathered}\begin{gathered} \sf {(x_{2} , y_{2} )=(4,2)}\end{gathered}\end{gathered} \\ \begin{gathered}\begin{gathered} \sf {(x_{3} , y_{3} )=( - 1, - 1)}\end{gathered}\end{gathered}

So, area of triangle ABC is

 \tt \: Area_{( \triangle \: ABC)}\:  = \dfrac{1}{2}  \{1(2 + 1) + 4( - 1 - 7) - 1(7 - 2) \}

 \tt \: Area_{( \triangle \: ABC)}\:  = \dfrac{1}{2} |3 - 32 - 5|

 \tt \: Area_{( \triangle \: ABC)}\:  = \dfrac{1}{2} |3 - 37|

 \tt \: Area_{( \triangle \: ABC)}\:  = \dfrac{1}{2} | - 34|

 \boxed{ \purple{ \tt \: Area_{( \triangle \: ABC)}\:  = 17 \: sq. \: units}}

So, Area of square ABCD is given by

 \bf \: Area \:  of  \: square  \:  = 2 \times  \tt \: Area_{( \triangle \: ABC)}

 \bf \: Area \:  of  \: square  \:  = 2 \times 17

 \bf \: Area \:  of  \: square  \:  = \: 34 \: sq. \: units

 \boxed{ \blue{ \bf \: Area \:  of  \: square  \:  =  \: 34 \: sq. \: units}}

Attachments:
Similar questions