Math, asked by Anonymous, 7 months ago

Find the area of the square insribed in a circle of radius 8 cm​

Answers

Answered by SpanditaDas
0

Answer:

Let ABCD be the square inscribed by the circle.

∴OA=OB=OC=OD

ABC is a right angled triangle, as OA=8,OB=8

AB=8+8=16

According to Pythagoras theorem,

Square of hypotenuse = Sum of squares of other two sides.

AC

2

=AB

2

+BC

2

As ABCD is a square all the sides are equal, AB=BC

AC

2

=2AB

2

16

2

=2AB

2

∴AB=8

2

therefore side of the square =8

2

Area of square =(8

2

)

2

=128cm

2

Answered by tusharanand2909
2

Answer:

128cm²

Step-by-step explanation:

answer will be 128 cm²

Attachments:
Similar questions