Math, asked by sheriyaa321bhattarai, 3 months ago

Find the area of the surface generated by revolving the curve
x= 2at, y = at^2,(0<=t<=a) about y-axis.​

Answers

Answered by shadowsabers03
1

Our curve satisfies the condition,

\longrightarrow x=2at

\longrightarrow t=\dfrac{x}{2a}

and,

\longrightarrow y=at^2

\longrightarrow y=a\left(\dfrac{x}{2a}\right)^2

\longrightarrow y=\dfrac{x^2}{4a}

\longrightarrow x^2=4ay\quad\quad\dots(1)

This is the Cartesian equation of our curve.

The curve is revolved around y axis, then we get a surface from which an elemental ring, whose radius is x and width is dy, can be considered.

The area of this elemental ring is,

\longrightarrow dA=2\pi x\ dy\quad\quad\dots(2)

But when we differentiate (1) wrt x,

\longrightarrow x^2=4ay

\longrightarrow 2x\ dx=4a\ dy

\longrightarrow dy=\dfrac{x\ dx}{2a}

Then (2) becomes,

\longrightarrow dA=2\pi x\cdot\dfrac{x\ dx}{2a}

\longrightarrow dA=\dfrac{\pi}{a}\, x^2\ dx\quad\quad\dots(3)

But,

\longrightarrow x=2at

\longrightarrow dx=2a\ dt

Then (3) becomes,

\longrightarrow dA=\dfrac{\pi}{a}(2at)^2\ 2a\ dt

\longrightarrow dA=8\pi a^2t^2\ dt

Hence the whole area of the surface generated is, since 0\leq t\leq a,

\displaystyle\longrightarrow A=8\pi a^2\int\limits_0^at^2\ dt

\displaystyle\longrightarrow A=\dfrac{8}{3}\pi a^2\left[t^3\right]_0^a

\displaystyle\longrightarrow\underline{\underline{A=\dfrac{8}{3}\pi a^5}}

Attachments:
Similar questions