Math, asked by jatt2156, 6 months ago

Find The area of the tin sheet required to make a cylindrical container with its lid if it's radius of the base is 21 cm and the height is 28 cm also find the volume of the container​

Answers

Answered by TheFairyTale
11

AnswEr:-

  • The area of the cylinder = 6468 cm^2
  • The volume of the cylinder = 38808 cm^3

GivEn :-

  • The radius of the base of the cylinder is 21 cm.
  • The height of the cylinder is 28 cm.

To Find :-

  • The area of the cylinder.
  • The volume of the cylinder.

Diagram :-

\setlength{\unitlength}{1.4cm} \thicklines \begin{picture}(2,0)\qbezier(0,0)(0,0)(0,2.5)\qbezier(2,0)(2,0)(2,2.5)\qbezier(0,0)(1,1)(2,0)\qbezier(0,0)( 1, - 1)(2,0) \put(1,1){\line(0,1){1}}\put(1,1){\line(0, - 1){1}}\put(1.1,1){ $\bf 28 \: cm$}\put(1.1,0.1){ $\bf 21 \: cm$}\put(1,0){\line(1,0){1}}\qbezier(0,2.5)(1,1.5)(2,2.5)\qbezier(0,2.5)(1, 3.5)(2,2.5){\boxed{ $ \bf @TheFairyTale $}}\end{picture}

Solution :-

The formula of the area of solid cylinder is,

 \implies \boxed{ \red{ \sf A_{cylinder } = 2\pi \times r(h + r)}}

\implies  \sf A_{cylinder } = 2 \times  \dfrac{22}{7}  \times 21(28 + 21)

\implies  \sf A_{cylinder } = 2 \times  \dfrac{22}{7}  \times 21 \times 49

\implies  \sf A_{cylinder } = 2 \times  22  \times 21 \times 7

\implies   \boxed { \red{\sf A_{cylinder } = 6468 \:  {cm}^{2} }}

We know the formula of volume of cylinder,

 \implies \boxed{ \red{ \sf V_{cylinder } = \pi \times  {r}^{2} \times h }}

 \implies \:  \dfrac{22}{7}  \times 21 \times 21  \times 28

 \implies \:  22  \times 21 \times 21  \times \: 4

 \implies \boxed{ \red{ \sf V_{cylinder } = 38808 \:  {cm}^{3}  }}

Similar questions