find the area of the traingle whose vertices(4,7) (1,3) (5,1)
Answers
Answered by
1
4,7) = (x₁,y₁) ; (1,3) = (x₂,y₂) ; (5,1) = (x₃,y₃)
Area of the triangle, ∆ = \frac{1}{2}21 | x₁(y₂-y₃) + x₂(y₃-y₁) + x₃(y₁-y₂) |
= \frac{1}{2}21 | 4(3-1) + 1(1-7) + 5(7-3) |
= \frac{1}{2}21 | 4(2) + 1(-6) + 5(4) |
= \frac{1}{2}21 | 8 - 6 + 20 |
= \frac{1}{2} | 2+20 |21∣2+20∣
= \frac{1}{2} | 22 |21∣22∣
= \frac{1}{2} (22)21(22)
= 11
Therefore,the area of the triangle is 11 units².
Hope it helps
Area of the triangle, ∆ = \frac{1}{2}21 | x₁(y₂-y₃) + x₂(y₃-y₁) + x₃(y₁-y₂) |
= \frac{1}{2}21 | 4(3-1) + 1(1-7) + 5(7-3) |
= \frac{1}{2}21 | 4(2) + 1(-6) + 5(4) |
= \frac{1}{2}21 | 8 - 6 + 20 |
= \frac{1}{2} | 2+20 |21∣2+20∣
= \frac{1}{2} | 22 |21∣22∣
= \frac{1}{2} (22)21(22)
= 11
Therefore,the area of the triangle is 11 units².
Hope it helps
Similar questions