Math, asked by akthekingmaker47, 3 months ago

find the area of the traingle whose vertices are (2,3),(-1,0),(2,-4)​

Answers

Answered by SachinGupta01
8

 \bf \underline{ \underline{\maltese\:Given} }

 \sf Vertices  \: of \:  the \:  triangle \:  are :

  \sf\implies(2, 3)

\sf\implies (- 1, 0)

\sf\implies(2,  - 4)

 \bf  \underline{\underline{\maltese\: To \:  find }}

 \sf We \: have \: to \: find \:the \: area \:  of  \: triangle.

 \bf  \underline{\underline{\maltese\: Solution}}

 \bf Area  \: of  \: triangle =

 \boxed{ \red{\sf \dfrac{1}{2}\ \times\ \bigg[x_1\bigg(y_2\ -\ y_3\bigg)\ +\ x_2\bigg(y_3\ -\ y_1\bigg)\ +\ x_3\bigg(y_1\ -\ y_2\bigg)\bigg]}}

 \bf \underline{Where},

 \implies \sf{x_1 = 2}

\implies \sf{x_2 =  - 1}

\implies \sf{x_3=  - 2}

 \implies \sf{y_1 = 3}

 \implies \sf{y_2 = 0}

 \implies \sf{y_3 =  - 4}

 \bf \underline{Now},

 \sf Substitute \:  the \:  values,

\sf \dfrac{1}{2}\ \times\ \bigg[2\bigg(0\ -\ (-4)\bigg)\ +\  - 1\bigg((-4)\ -\ 3\bigg)\ +\ 2\bigg(3\ -\ 0\bigg)\bigg]

\sf \dfrac{1}{2}\ \times\ \bigg[2(4)\ +\  - 1(-7)\ +\ 2(3)\bigg]

\sf \dfrac{1}{2}\ \times\ \bigg[ 8\ -\  (-7) +\ 6\bigg]

\sf \dfrac{1}{2}\ \times\ \bigg[ 8 +7 +\ 6\bigg]

\sf \dfrac{1}{2}\ \times\ \bigg[ 21\bigg]

\sf \dfrac{1}{2}\ \times21 =\dfrac{21}{2}

 \underline{ \boxed{ \red{ \bf So, area \:  of \:  triangle \:  is  \:\dfrac{21}{2}  \: square \:  units. }}}

Similar questions