Math, asked by amanpreet6745, 5 months ago

find the area of the trapezium given below.​

Attachments:

Answers

Answered by Anonymous
32

Answer :-

\setlength{\unitlength}{1.5cm}\begin{picture}\thicklines\qbezier(0,0)(0,0)(1,2.2)\qbezier(0,0)(0,0)(4,0)\qbezier(3,2.2)(4,0)(4,0)\qbezier(1.5,2.2)(0,2.2)(3,2.2)\put(0.8,2.4){$\bf A $}\put(3,2.4){$\bf D $}\put(-0.3,-0.3){$\bf B$}\put(4,-0.3){$\bf C$}\put(4.4,0){\vector(0,0){2.2}}\put( 4.4, 0){\vector(0,-1){0.1}}\put(4.6,1){$\bf 12\ cm$}\put(0, -0.5){\vector(1,0){4}}\put(0, -0.5){\vector( - 1, 0){0.1}}\put(1.7, - 0.9){$\bf 15\ cm $}\put(0.8, 2.8){\vector(1,0){2.5}}\put(0.8, 2.8){\vector( - 1, 0){0.1}}\put(1.7, 3){$\bf 10\ cm $}\end{picture}

Given :-

Trapezium ABCD with sides of length :-

  • AB = 15 cm
  • CD = 10 cm
  • CB = 13 cm

To find :-

Area of trapezium

Formula used :-

Area of trapezium = ½ × Sum of parallel sides × Distance between the parallel sides

Solution :-

According to the question :-

Area of trapezium ABCD = ½ × ( AB + CD ) × CE

Applying Pythagoras theorem in ∆ CEB

EB = 15 - 10 = 5 cm

CB = 13 cm

\implies\sf (EB)^2 + (CE)^2 = (CB)^2

\implies\sf 5^2 + (CE)^2 = 13^2

\implies\sf 25 + (CE)^2 = 169

\implies\sf (CE)^2 = 144

\implies\sf CE = \sqrt{144}

\implies\sf CE = 12 cm

Now we have -

  • AB = 15 cm
  • CD = 10 cm
  • CE = 12 cm

Substituting the value in formula :-

Area of trapezium ABCD = ½ × ( AB + CD ) × CE

\sf =  \frac{1}{2} \times (15 + 10) \times 12

\sf =  \frac{1}{ \cancel 2}  \times 25 \times 1\cancel 2

\sf = 25 \times 6

\sf = 150 cm^2

\boxed{\rm Area \:of \:trapezium = 150 cm^2 }

Answered by MizZFaNtAsY
10

Answer:

Answer:

अ + न् + ध + क + आ + र

ये इसका उत्तर

Similar questions