Math, asked by sakthi2785, 11 months ago

find the area of the trapezium PART whose sides PA=12cm PT=AR=10cm and TR=22 CM ALSO PA ||TR​

Answers

Answered by aryan12326
9

Answer:

area is 128cm² hope it will help you

Attachments:
Answered by amirgraveiens
1

The area of the trapezium PART is 85\sqrt{3} cm^2.

Step-by-step explanation:

Given:

Here PART is a trapezium.

PA = 12cm, PT = AR = 10cm and TR = 22.

Also PA║TR

Let PC and AD be the perpendiculars drawn to the side TR

Now CT as shown in the figure below,

Here CT = DR = TR - CD

                       = 22 - 12                  [shown in figure]

                       = 10 cm

∴ TC = DR = 5 cm

Using pythogrs theorem,

In ΔPCT,

PT^2=PC^2+CT^2

PC^2= 10^2-5^2

PC^2=100-25

PC^2=75

PC=\sqrt{75}

PC= 5\sqrt{3} =AD                 [shown in fugue]

Area of the trapezium PART = Area of ΔPTC + area of ΔADR + area of PACD

                                               

= \frac{1}{2} \times base \times height + \frac{1}{2} \times base \times height  +base \times height

= \frac{1}{2} \times CT \times PC + \frac{1}{2} \times DR \times AD  +PA\times AD

= \frac{1}{2} \times 5 \times 5\sqrt{3}  + \frac{1}{2} \times 5 \times 5\sqrt{3}  + 12\times 5\sqrt{3}

= 5\sqrt{3} [\frac{5}{2}+\frac{5}{2}+12  ]

= 5\sqrt{3}[\frac{10}{2}+12 ]

= 5\sqrt{3}[5+12]

= 5\sqrt{3} \times 17

= 85\sqrt{3} cm^2

Therefore the area of the trapezium PART is 85\sqrt{3} cm^2.

Attachments:
Similar questions