Find the area of the trapezium
PRTS, given that the side ST of the
parallelogram PQTS is 28 cm, side
QT = 10 cm, TR = 10 cm and TM = 6 cm.
S
28 cm
T
10 cm
10 cm
6 cm
PR
M
Q
Answers
Answered by
1
Answer:
Given that,
Side of ST = 28 cm
Side of QT = 10 cm
Side of TR = 10 cm
Side of TM = 6 cm
We need to calculate the value of RQ
Using pythagorean theorem,
RM=\sqrt{(RT)^2-(TM)^2}RM=(RT)2−(TM)2
Put the value into the formula
RM=\sqrt{(10)^2-(6)^2}RM=(10)2−(6)2
RM=8\ cmRM=8 cm
So, The value of RQ will be 16 cm.
We need to calculate the area of the trapezium PRTS
Using formula of area
A=Area\ of\ parallelogram\ PQTS-Area\ of\ triangle\ RTQA=Area of parallelogram PQTS−Area of triangle RTQ
A=h\times b-\dfrac{1}{2}\times b\times hA=h×b−21×b×h
Put the value into the formula
A=28\times6-\dfrac{1}{2}\times16\times6A=28×6−21×16×6
A=120\ cm^2A=120 cm2
Hence, The area of the trapezium PRTS is 120 cm².
Attachments:
Similar questions