Math, asked by rajeshgattepalli, 2 days ago

find the area of the trapezium whose parallel sides are 7 cm 9 cm and distance between them is 8 cm​

Answers

Answered by Anonymous
40

Given : The Parallel sides are 7 cm 9 cm and distance between them is 8 cm .

 \\ \\

To Find : Find the Area of the Trapezium

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \maltese Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Area{\small_{(Trapezium)}} = \dfrac{1}{2} \times \bigg( a + b \bigg) \times Height }}}}}

Where :

  • a = 1st Parallel Side
  • b = 2nd Parallel Side

 \\ \\

 \maltese Calculating the Area :

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Area = \dfrac{1}{2} \times \bigg( a + b \bigg) \times Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Area = \dfrac{1}{2} \times \bigg( 7 + 9 \bigg) \times 8 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Area = \dfrac{1}{2} \times 16 \times 8 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Area = \dfrac{1}{2} \times 128 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Area = \dfrac{128}{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Area = \cancel\dfrac{128}{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; {\underline{\boxed{\purple{\pmb{\frak{ Area = 64 \; {cm}^{2} }}}}}} \; {\orange{\bigstar}} \\ \\ \\ \end{gathered}

 \\ \\

 \qquad {\pink{\leadsto}} Area of the Trapezium is 64 cm² .

 \\ \qquad{\rule{200pt}{2pt}}

Answered by TheAestheticBoy
21

Question :-

  • Find the Area of the Trapezium, whose parallel sides are 7 cm || 9 cm and Distance between them is 8 cm.

Answer :-

  • Area of Trapezium is 64 cm² .

 \rule {210pt}{2pt}

Given :-

  • Parallel sides = 7 cm || 9 cm
  • Distance = 8 cm

To Find :-

  • Area of Trapezium = ?

Solution :-

  • Here, Parallel sides are given 7 cm || 9 cm . Distance is 8 cm . And, we have to find Area of Trapezium .

➻ Formula Required :-

  •  \sf{ Area \: of \: Trapezium =  \frac{1}{2} \times (A + B) \times Height } \\

Where ,

  • AB denotes to Parallel Sides .

By substituting the values :-

 \dag \:  \:  \sf{ Area \: _{Trapezium} =  \frac{1}{2} \:  \times \:  (A + B)  \: \times  \: Height } \\

 \Longrightarrow \:  \: \sf{Area \: _{Trapezium} =  \frac{1}{2} \: \times \: (7 + 9) \: \times \: 8 } \\

 \Longrightarrow \:  \: \sf{Area \: _{Trapezium} =  \frac{1}{2}  \: \times \:  16 \:  \times  \: 8 } \\

 \Longrightarrow \:  \: \sf{Area \: _{Trapezium} =  \frac{1}{1} \:  \times  \: 8 \:  \times  \: 8 } \\

 \Longrightarrow \:  \: \sf{Area \: _{Trapezium} = 8 \:  \times  \: 8} \\

 \Longrightarrow \:  \: \bf{Area \: _{Trapezium} = 64 \:  {cm}^{2} } \\

Hence :-

  • Area = 64 cm² .

 \rule {210pt}{4pt}

 \begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \pmb {\sf \red{ \dag \:  \: More \: Formulas \:  \:  \dag}}}} \\  \\  \\  \footnotesize \bigstar  \:  \sf{Area \: of \: Square = Side \times Side}  \\  \\  \\   \footnotesize\bigstar  \:  \sf{Area \: of \: Rectangle = Lenght \times Breadth} \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Triangle =  \frac{1}{2} \times Base \times Height } \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Parallelogram = Base \times Height} \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Trapezium =  \frac{1}{2} \times [ \: A + B \: ] \times Height } \\ \\ \\ \footnotesize \bigstar \: \sf {Area \: of \: Rhombus = \frac{1}{2} \times Diagonal \: 1 \times Diagonal \: 2}\end{array}}\end{gathered}\end{gathered}

Attachments:
Similar questions