Math, asked by aastikbiswas2007, 2 days ago

find the area of the triangle..

Attachments:

Answers

Answered by maditya102007
2

Answer:

correct answer is (3)

hope it helps :)

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that, In triangle ABC

  • AB = x cm

  • BC = x + 2 cm

  • CA = x + 4 cm

According to statement, it is given that

AB × AC = 4 BC + 1

So, on substituting the values, we get

\rm \: x(x + 4) = 4(x + 2) + 1 \\

\rm \:  {x}^{2} + 4x = 4x + 8 + 1 \\

\rm \:  {x}^{2}  = 8 + 1 \\

\rm \:  {x}^{2}  = 9 \\

\rm \:  {x}^{2}  =  {3}^{2}  \\

\rm\implies \:x = 3 \\

So, sides of triangle are

  • AB = x = 3 cm

  • BC = x + 2 = 3 + 2 = 5 cm

  • CA = x + 4 = 3 + 4 = 7 cm

Now, we have to evaluate the area of triangle using Heron's Formula.

So,

\rm \: Semi-perimeter = \dfrac{AB + BC + CA}{2}  \\

\rm \: s = \dfrac{3 + 5 + 7}{2}  \\

\rm\implies \:\rm \: s = \dfrac{15}{2}  \: cm \\

Now,

\rm \: Area_{(\triangle\:ABC)} \\

\rm \:  =  \:  \sqrt{s(s - AB)(s - BC)(s - CA)}  \\

\rm \:  =  \:  \sqrt{\dfrac{15}{2} \bigg(\dfrac{15}{2}  - 3\bigg) \bigg(\dfrac{15}{2} - 5\bigg) \bigg(\dfrac{15}{2}  - 7\bigg) }  \\

\rm \:  =  \:  \sqrt{\dfrac{15}{2} \bigg(\dfrac{15 - 6}{2}\bigg) \bigg(\dfrac{15 - 10}{2}\bigg) \bigg(\dfrac{15 - 14}{2} \bigg) }  \\

\rm \:  =  \:  \sqrt{\dfrac{15}{2} \bigg(\dfrac{9}{2}\bigg) \bigg(\dfrac{5}{2}\bigg) \bigg(\dfrac{1}{2} \bigg) }  \\

\rm \:  =  \: \dfrac{15}{4}  \sqrt{3} \:  {cm}^{2}  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \:Area_{(\triangle\:ABC)}  =  \: \dfrac{15}{4}  \sqrt{3} \:  {cm}^{2} \:  \: }}  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Similar questions