Math, asked by pavanmadwa01, 2 months ago

find the area of the triangle for which it holds that length of sides are roots of polynomial f(x)= x^3+ax^2+bx+c​

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\mathsf{f(x)=x^2+ax^2+bx+c}

\underline{\textbf{To find:}}

\textsf{The area of the triangle whose sides are roots of f(x)}

\underline{\textbf{Solution:}}

\mathsf{Let\;\alpha,\beta\;and\;\gamma\;be\;the\;roots\;of\;f(x)}

\mathsf{Then,}

\mathsf{\alpha+\beta+\gamma=-a}

\mathsf{\alpha\beta+\beta\gamma+\gamma\alpha=b}

\mathsf{\alpha\beta\gamma=-c}

\mathsf{Clearly\;\alpha,\beta,\gamma\;are\;sides\;of\;the\;required\;triangle}

\textsf{We apply Heron's formula to find the area of the triangle}

\mathsf{Here,\;s=\dfrac{\alpha+\beta+\gamma}{2}=\dfrac{-a}{2}}

\mathsf{Also,}

\mathsf{(s-\alpha)(s-\beta)(s-\gamma)}

\mathsf{=s^3-(\alpha+\beta+\gamma)s^2+(\alpha\beta+\beta\gamma+\gamma\alpha)s-\alpha\beta\gamma}

\mathsf{=s^3-(-a)s^2+(b)s-c}

\mathsf{=s^3+a\,s^2+b\,s-c}

\mathsf{=\left(\dfrac{-a}{2}\right)^3+a\left(\dfrac{-a}{2}\right)^2+b\left(\dfrac{-a}{2}\right)-c}

\mathsf{=\dfrac{-a^3}{8}+a\left(\dfrac{a^2}{4}\right)-\dfrac{ab}{2}-c}

\mathsf{=\dfrac{-a^3+2a^3}{8}-\dfrac{ab}{2}-c}

\mathsf{=\dfrac{a^3}{8}-\dfrac{ab}{2}-c}

\mathsf{=\dfrac{a^3-4ab-8c}{8}}

\mathsf{Now,}

\underline{\textsf{Area of the required triangle}}

\mathsf{=\sqrt{s(s-a)(s-b)(s-c)}}

\mathsf{=\sqrt{\dfrac{-a}{2}\left(\dfrac{a^3-4ab-8c}{8}\right)}}

\mathsf{=\sqrt{\dfrac{-a^4+4a^2b+8ac}{16}}}

\mathsf{=\dfrac{\sqrt{8ac+4a^2b-a^4}}{4}}}

Similar questions