Math, asked by priyankadudeja1124, 10 months ago

Find the area of the triangle formed by the points by using the heron's formula (2,3),(-1,3)and(2,-1)

Answers

Answered by TheVenomGirl
32

GiVen:

Points :

  • A(2,-3)

  • B(-1,3)

  • C(2,-1)

AnSwer:

 \\ \sf \implies \: AB =   \sqrt{ {( - 1 - 2)}^{2} + {(3 - 3)}^{2} } \\   \sf \implies \:AB =  \sqrt{ { (- 3)}^{2}  +  {(0)}^{2} } \\   \sf \implies \:AB =  \sqrt{9}  \\  \implies { \underline{ \boxed{ \sf{ \red{\:AB = 3 \: units }}}}} \:  \bigstar\\  \\  \\ \sf \implies \:BC = \sqrt{ {( -2 - ( - 1))}^{2} + {( - 1- 3)}^{2} } \\ \sf \implies \:BC = \sqrt{ {(2 + 1)}^{2}  +  {( - 4)}^{2} }  \\ \sf \implies \:BC = \sqrt{ {(3)}^{2} + 16 }  \\ \sf \implies \:BC = \sqrt{9 + 16}  \\ \sf \implies \:BC = \sqrt{25}  \\  \implies { \underline{ \boxed{ \sf{ \purple{\:BC =5 \: units}}}}} \:  \bigstar \\  \\  \\ \sf \implies \:AC =\sqrt{ {( 2 - 2)}^{2} + {( - 1 - 3)}^{2} } \\ \sf \implies \:AC = \sqrt{ {(0)}^{2}  +  {( - 4)}^{2} }  \\ \sf \implies \:AC = \sqrt{16}  \\  \implies { \underline{ \boxed{ \sf{ \pink{\:AC =4 \: units}}}}} \:  \bigstar

Now,

━━━━━━━━━━━━━━━━━━━━━━━━

Let us firstly find the value of S.

As we know that,

\longmapsto \:  \: {\boxed{ \boxed{\sf { \purple{\: S =  \dfrac{a + b + c}{2} }}}}}

 \sf\longmapsto \:  \:s =  \dfrac{5 + 4 + 3}{2}  \\  \\ \sf\longmapsto \:  \:s =  \dfrac{12}{2}   \\  \\ \sf\longmapsto { \sf{\:  \:s = 6 \:  units}}

━━━━━━━━━━━━━━━━━━━━━━━━

Now, According to the Herons formula,

 \sf \implies  A={\sqrt {s(s-a)(s-b)(s-c)}} \\  \\  \sf \implies \:  \sqrt{6(6 - 5)(6 - 4)(6 - 3)}  \\  \\ \sf \implies \:  \sqrt{6 \times 1 \times 2 \times 3}  \\  \\ \sf \implies \:  \sqrt{36 \: } \\  \\ \implies { \underline{ \boxed{ \sf{ \blue{\: 6 \: units}}}}}  \: \bigstar

Therefore, area of the triangle formed is 6 units.

━━━━━━━━━━━━━━━━━━━━━━━━


vikram991: Keep it up :excited:
Similar questions